
AXI HW/SW
VERIFICATION FOR FPGA

Bruno Bratti

Principal Engineer, Wave Semiconductor

Overview

u  Our Project

u  Platform

u  FPGA Development Environment

u  Verification Environment

u  AXI Background

u  AXI Details

u  AXI Channel Architecture

u  Example Transactions

u  DPI

u  Imported and Exported Tasks and
Functions

u  Example DPI code

u  Example DPI AXI Master Transactor

u  Summary

u  Questions

Our Project

u  Customer delivery of AXI connected RTL IP delivered on FPGA Model

u  IP runs SW which is loaded through AXI

u  Dynamic loading and unloading of SW on FGPA model via host PC

u  This prevented several verification challenges

Platform

u  We used the S2C platform with Xilinx Virtex7 FPGAs

FPGA Development Environment

u  Used Xilinx Vivado 2014.2

u  Xilinx is pushing hard on AXI as the interconnect of choice
for IP on it’s FPGAs

u  Easy to use and integrate AXI IP in Xilinx FPGA projects

u  Used S2C Protobridge to drive AXI on FPGA
u  3rd Party User level driver connects to Xilinx PCIe IP on FPGA board

allowing user level access to AXI master which drives the
environment

u  Can read and write to FPGA from PC using simple functions like:

u  AXI_Write128(…, AXI_Read128(…, etc…

Verification Environment

u  RTL simulation with VCS

u  We want to use the same C code in VCS simulation to drive
FPGA in production
u  AXI_Write128(…, AXI_Read128(…, etc…

u  Solution: Use DPI
u  DPI allows C/C++ code to connect with an RTL simulation

u  Create DPI based AXI Master Transactor to drop into FPGA RTL for
simulation, replacing connection to Xilinx AXI to PCIe bridge.

AXI Background

u  AXI = Advanced eXstensible Interface

u  ARM introduced AXI at the Embedded Processor Forum in
2003

u  Provides high bandwidth and low latency

AXI Details

u  Separate address/control and data phases

u  Separate read and write channels (for efficient
DMA)

u Unaligned data transfers using separate byte-lane
strobes

u Multiple outstanding transactions

u Out of order transaction completion

AXI Channel Architecture

u 5 unidirectional channels
u Write Address

u Read Address

u Write Data

u Read Data

u Write Response

Example: AXI Read Transaction

u Master issues address and control

u  Slave returns data and response

Example: AXI Write Transaction

u Master issues address and control

u Master sends data

u  Slave acknowledges

DPI Overview

u  The SystemVerilog Direct Programming Interface (DPI) is
an interface between SystemVerilog and the C language. It
allows the designer to easily call C functions from
SystemVerilog and to export SystemVerilog functions, so
that they can be called from C.

u  The DPI has great advantages: it allows the user to reuse
existing C code and also does not require the knowledge
of previous mechanisms to connect simulation and C code.
The previous mechanisms like VPI, etc. were confusing
and cumbersome.

Imported and Exported Tasks and
Functions

u Functions implemented in C can be called from
SystemVerilog using import "DPI" declarations. We
will refer to these functions as imported tasks and
functions. All imported tasks and functions must
be declared.

u Functions and tasks implemented in SystemVerilog
and specified in export "DPI" declarations can be
called from C. We will refer to these tasks and
functions as exported tasks and functions.

Example System Verilog Code

import "DPI-C" context task wm_main();

export "DPI-C" task waitConfigDone;

 task waitConfigDone;

 begin

 $display("Waiting for config done\n");

 // CODE GOES HERE

$display("Got config done\n");

 end

 endtask

Example C Code

extern "C" void wm_main()

{

 printf("C CODE - Calling w_main. Wait for config
done\n");

 waitConfigDone();

// CODE GOES HERE

 printf(“TEST STARTS\n");

DPI Command Lines

u Comple C Code:
u g++ -fPIC -c -I. -o bruno_dpi.o -DRTL_SIM test_code.cpp

-I/tools/synopsys/vcs/J-2014.12-1/include

u g++ -shared -o libbruno.so bruno_dpi.o

u VCS command line addition:
u vcs ….. libbruno.so …..

u Run test
u  ./simv |& tee runlog.out

DPI AXI Master Transactor C code

void PCIE_Write128_h(UINT32 base, UINT64 dwOffset,
svBitVec32* WdataVec) {

svBitVec32 addrVec[SV_CANONICAL_SIZE(64)] ;

 addrVec[0] = dwOffset;

 addrVec[1] = base;

 printf("WRITE 128 A:0x%x%x D: 0x%x 0x%x 0x%x 0x%x\n",
base,dwOffset,WdataVec[0], WdataVec[1], WdataVec[2],
WdataVec[3]);

 master_xtor_write(addrVec,16,WdataVec);

 return;

}

DPI AXI Master System Verilog Code

task master_xtor_write;

input [AXI_AW-1:0] addr;

input bytes_num;

input [127:0] data_in_cpp;

bit [AXI_AW-1:0] addr;

int bytes_num;

bit [MAX_WIDTH-1:0] data_in;

bit [127:0] data_in_cpp;

Summary

u Using the approaches described in this
presentation we were able to deliver our FPGA IP
model to our customer with minimal time spent
on debug

u AXI is an easy to use industry standard to connect
IP in SOC / FPGA environments

u DPI is easy to use to connect System Verilog
simulations with C code

