

FPGA Prototyping Primer

S2C Inc.

1735 Technology Drive, Suite 620
San Jose, CA 95110, USA

Tel: +1 408 213 8818
Fax: +1 408 213 8821

www.s2cinc.com

What is FPGA prototyping?
FPGA prototyping is the methodology to prototype SoC and ASIC designs on
FPGAs for hardware verification and for early software development. This
methodology is sometimes referred also as ASIC prototyping or SoC prototyping.

Prototyping SoC and ASIC designs on FPGAs has become a mainstream
verification methodology for hardware design as well as a method for early
software and firmware co-design.

Why is it important to prototype?
1. With SoC designs becoming more complex than ever, designers are
increasingly finding it difficult to rely only on software simulations to verify that
their hardware design is correct -- due to both simulation speed and modeling
accuracy limitations. Running your SoC design on a FPGA prototype is the most
reliable way to ensure that your design is functionally correct.

2. But, hardware verification is no longer the number one reason why most
designs today are prototyped on FPGAs. Early software and/or firmware
development on FPGA prototypes, pre-silicon, has become more important as
many unforeseen software bugs stem from the complexity of integrating
operating system (OS), applications, and hardware. Most projects can't afford to
wait until the silicon is back from the foundry to start software testing. An at-
speed FPGA prototype allows for many extra months of rigorous software
development and testing at the crucial software-hardware integration stage.

3. FPGA prototyping is also critical if your SoC design utilizes many commercial
IPs. Prototyping on FPGAs will be your most reliable method to make sure all
these IPs work well together.

4. FPGA prototypes can also be used as demo platforms to the SoC customers
for getting them interested in the chip you build and allow you to work with them
on improving features before chip tape-out.

Current Challenges in FPGA Prototyping

Long Bring-Up Time
Designers need a clear board-testing strategy prior to
manufacturing because there will be thousands of pins to test.
Without a good test plan, it will be hard to pinpoint problems if the
board does not operate according to specifications.
The key question you should answer before you decide to build
your own FPGA prototyping board is “How long it will take to bring
up the board and test thousands of IOs?” In many cases, your

FPGA prototypes might require a re-spin in order to work, which
may add up to 2 months to your project.

Solution: Source a prototyping tool with comprehensive self-test
capabilities to detect and deal with hardware issues as soon as they
happen.

Performance
Designers always prefer to run the FPGA prototype at real-time or
near real time speed to more closely approximate performance of
the end product.
FPGA prototyping performance might not be able to achieve the
actual performance of the target SoC/ASIC. There are generally two
reasons for this performance discrepancy: FPGA limitations and
PCB board limitations.

Solution to FPGA Limitations: Use different synthesis tools, tighten
timing constraints, or modify your design.

Solution to PCB board limitations: Work with a well-designed
prototyping board with equal-length clock traces, equal length IOs,
and stable power and ground to accommodate prototyping at high
speeds. Impedance matching may also be needed for extreme
high-performance IOs such as DDR memory interfaces.

Reusability
The ability to reuse your existing prototype or at least part of your
prototype can save development time and lower implementation risk
for future projects.

SoC design sizes continue to grow as new semiconductor
processes become available and consumers desire new application
features. Your FPGA prototype will probably require upgrading as
well. Many designers like to build the interface to external systems
directly on the FPGA board. This approach may serve for single
projects but renders both the FPGA and the peripheral interface
unfit for reuse in other projects if the design size is larger or the

peripheral interface is different.

Solution: Structure your FPGA prototyping system into independent
FPGA and interface boards to create modularity that allows for a
high degree of FPGA reusability.

Design Partitioning
Design partitioning is needed for designs that cannot fit into one
FPGA.

Partitioning problems arise when the number of FPGA pins is
limited, and is further magnified as the number of FPGAs increases.
There are generally two main issues to deal with: - How do you
interconnect the IOs among multiple FPGAs on your prototype? -
How do you partition your design to fit the architecture of your
FPGA prototype board? Hand partitioning a design to multiple
FPGAs is error-prone and time-consuming. Examples of potential
problems include: insufficient number of pins, clock
synchronizations, failure to meet performance expectations, and
external pin entry point.

Solution: Partition the design at the block-level, then utilize a user-
guided partitioning solution to quickly to arrive at an optimal result in
terms of performance, area balancing, and enabling incremental
revisions. Employing this type of integrated HW/SW prototyping
system upholds interconnect quantity and quality (via HW) and
automatic partitioning (via SW), thereby saving development time.

Debug-ability
Taking steps to ensure a design is debug friendly minimizes the
time spent on debugging later on in the process/schedule.
It's unlikely your design will work the first time after you download it
to a FPGA. Your design might not be working because 1) the FPGA
prototype itself has problems, 2) the design may have a problem
and/or 3) an error has accrued during design compiling (e.g. wrong
pin assignments). Ideally, you would first need a good testing
method to identify if the hardware is running correctly and all the
pins in the design are functioning normally. Then, either an External

Logic Analyzer and/or Internal Logic Analyze (e.g. Xilinx's
Chipscope) would be needed to identify problems arising from
design or mapping errors. This sometimes requires tedious work to
get internal signals out to the boundary for external LA probing.
Moreover, most internal logic analyzers today do not support
debugging designs mapped to multiple FPGAs – making your
debugging job even more difficult.

Solution: Select a prototyping system that includes self-test function
capabilities and supports logic analyzers that can debug multiple
FPGAs.

Build-Your-Own vs. Off-The-Shelf: Which Is Right for You?
Do you view the decision to build-or-buy your prototyping system as a short-term
cost-driven tactic or part of your functional verification strategy -- with implications
on future product development?

For chip design companies that operate on huge economies of scale and adhere
to a great degree of format-specific processes in their design flow, full custom
capability may be important. However, given execution risk along with time and
cost constraints - purchasing a proven prototyping system becomes hard to
ignore and a much more compelling choice (especially for companies operating
at less than huge economies of scale). Verification can consume from two-thirds
to four-fifths of total development time. A mature off-the-shelf product provides
guaranteed timing parameters, can be re-used for multiple designs, and comes
with dedicated technical support – minimizing the risks of porting a prototype that
doesn't work according to specifications. The time spent on building a prototype
from scratch is eliminated, along with associated non-recurring engineering
costs, which translate to faster time-to-prototype and in the end, lower overall
costs.

FPGA Prototyping Design Flow - First Time

Off-the-Shelf vs. Build-Your-Own

Ready-made prototyping solutions have matured considerably in recent years,
providing stable design environments and greater control through software and
peripherals. The traditional build-your-own in-house modules may not only
increase project time but also result in greater overall development costs.

FPGA Prototyping Design Flow - Reiteration
SoC design specifications must often be modified due to market or technical
reasons. Therefore, it is important to keep the FPGA prototyping environment
flexible, in case such events occur. The diagram below illustrates the flow
difference when a design undergoes significant changes.

Summary

FPGA prototyping has many benefits including overcoming speed accuracy
limitations from simulation, developing software and firmware much earlier,
testing IP integration with high reliability, and creating demo platforms for early
customer engagements. And although, FPGA has some perceived challenges,
overcoming those challenges with the right prototyping solutions is easy and
cost-effective leading to much faster time-to-market.

