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Foreword 

The Future of FPGA Prototyping 
Nearly two decades ago during our time at Aptix, my S2C co-founder, 
Toshio Nakama and I recognized the power of prototyping. At that time, 
prototyping was only accessible by large design houses with the budget 
and means to employ a prototyping architecture.  We also recognized 
that FPGAs had become a popular alternative to the much more 
expensive and rigid ASICs. It was then that we both decided to team up 
to develop a prototyping board around an FPGA, and S2C was born. Our 
commitment to our customers has been to push the limits of what FPGA 
prototyping can do to make designing easy, faster, and more efficient. 
Our goal has always been to close the gap between design and 
verification which meant that we needed to provide a complete 
prototyping platform to include not only the prototyping hardware but 
also the sophisticated software technology to deal with all aspects of 
FPGA prototyping. 

Fast forward to today and you’ll find that FPGAs and FPGA prototyping 
technology has advanced so much that designers and verification 
engineers can no longer ignore the value that they bring, especially 
when dealing with the very large and complex designs that we see today. 
These advances have made FPGA prototyping poised to become a 
dominant part of the design and verification flow.  This book will 
hopefully give you a sense of how this is achieved. 

But what’s next for FPGA prototyping?  Having dedicated my time to 
working with our customers in developing the evolution of FPGA 
prototyping, I have figured out two things: FPGA prototyping needs to 
be part of the conversation early on in the design process, and FPGA 
prototyping needs to move to the cloud. 

What do I mean by these two statements? Well, let’s break it down. 

Design for FPGA Prototyping 
Making FPGA prototyping part of the design process early means 
actually thinking about how the design will be prototyped via an FPGA 
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as you design – Design for FPGA Prototyping. Designing for prototyping 
will significantly speed up the FPGA prototyping process downstream.  
It will aid in the act of synthesis, partitioning, and debug. I’ve outlined 
six ways that this is achieved: 

1) Prototyping-friendly Design Hierarchies  

Design architects can make the job of prototyping much easier 
for engineers to implement FPGA prototyping by modifying the 
design hierarchy to work better in a prototyping environment. 
The engineers who perform implementation or verification 
usually have very little ability to improve prototyping 
performance once the design hierarchy is fixed. The need to do 
partitioning down to the gate level can be removed if the size of 
each design block can be kept to one FPGA. Furthermore, 
modifying the design hierarchies early can help to avoid pin 
congestion as many times a design becomes very difficult to 
implement in an FPGA or becomes very slow because there’s a 
central block that has tens of thousands of signals that need to 
go to multiple blocks in different FPGAs. Design architects can 
also ease prototyping by providing guidance to their FPGA 
implementation team(s). 

2) Block-based Prototyping 

Instead of hoping the entire design will magically work when 
mapped and downloaded to multiple FPGAs, bringing up sub-
systems of the entire design, block by block, will allow quick 
identification of both design issues in a sub-block as well as any 
issues related with mapping the design to the FPGA(s).  Block-
based prototyping works well especially with designs that 
contain many 3rd party IPs that also needs a lot of real time 
testing and early software development. 

And very often, designers don’t even have the RTL source code 
for the IP blocks from 3rd parties (for example, ARM processors) 
and therefore cannot map the IP to the FPGAs themselves. This 
can be solved by requesting the IP provider to supply the 
encrypted netlist so that you can synthesize and partition the 
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entire design while treating that IP as a black-box. As long as you 
specify the correct resources (LUT, registers, I/Os), the 
prototype compile software should take those resources into 
account when partitioning to multiple FPGAs. You can then 
integrate the encrypted netlist during the place and route stage. 

I’ve come across customers that want to do an FPGA 
implementation but are reusing some very old blocks with only 
the ASIC netlist and without RTL.  Implementation becomes 
very difficult since the details of the design are unknown. These 
legacy designs are usually only accompanied by a testbench. In 
this case, the best approach is to covert the ASIC gates to an 
FPGA and to use a co-simulation environment (such as S2C’s 
ProtoBridge™) to verify if the functionality of the block is correct 
before integrating it with the entire design. Unfortunately, this is 
still a painful process so designers should consider either not 
using those legacy blocks or re-writing them. 

Note that a reconfigurable and scalable prototyping system is 
needed for a block-based prototyping methodology, as well as a 
robust partitioning and FPGA prototyping software flow. 

3) Clean and Well-defined Clock Network for Prototyping 

Many ASIC designs have tens or even hundreds of clocks and 
most of them are just for power management/saving. Even with 
the most complex designs there are usually a few real system 
clocks plus some peripheral clocks such as PCIe and DDR. 
Peripheral clocks usually reside in a single FPGA which has the 
actual external interface pins and therefore are easy to 
implement.  System clocks, however, need to go to every FPGA 
and therefore should be clean for FPGA implementation. 

ASICs use a lot of gated clocks to save power. Today’s FPGA 
synthesis tools have advanced to take care of most of the gated 
clocks, but there may still be some gated clocks that go 
undetected and therefore cause design issues. This can easily be 
avoided by creating two different RTL clock implementations for 
the ASIC and the FPGA by using IFDEF. 
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Internally generated clocks can also be a problem for an FPGA 
prototyping environment as they all need to get on the FPGAs’ 
global clock lines and synchronize among all the FPGAs. A 
Multi-FPGA prototyping system will have a limitation on how 
many of these global clocks can be supported therefore the 
number of the internally generated clocks should be restricted 
(or again use two implementations in the RTL: one for ASIC, and 
one for FPGA). 

4) Memory Modeling 

ASICs support many different types of memories while FPGAs 
usually support two types: synchronous dual port memories, or 
the use of registers and LUTs to build custom memories. The 
latter one consumes large amounts of logic resources and might 
cause place and route congestion. Most ASIC memories can be 
re-modeled to take advantage of the block memories in the 
FPGA but a manual process may be required to do that. Again, 
instead of having the engineers who try to implement the ASIC 
design in a FPGA model the memories, a better approach would 
be to have the architects plan the designs with two memory 
implementations both for ASICs and FPGAs. The RTL designers 
then code using IFDEF to have the two implementations. FPGA 
prototyping becomes easy by just instantiating the correct 
memory implementations. 

5) Register Placement on the Design Block I/Os 

FPGAs usually have a lot of register resources available for the 
design but most ASIC designs try to use less registers to save 
area and power.  Ideally, all block I/Os should be registered for 
FPGA implementation to achieve the best results. At a minimal 
all outputs should be registered so no feed-through nets (which 
impact system performance by half) will be created after design 
partitioning. As a result, there will be a noticeably higher FPGA 
prototyping performance with this approach. 
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6) Avoid Asynchronous or Latch-based Circuits 

Asynchronous circuits and latch-based designs are FPGA un-
friendly. It is very hard to fine-tune timing in an FPGA with 
every FPGA having to be re-place and re-routed multiple times. 
These issues become even worse when the asynchronous circuits 
have to travel across multiple FPGAs. 

Moving to the Cloud 
We are living in an age where design teams no longer reside in one 
geographic location. No matter how big or small, companies have 
multiple design teams in multiple locations. A cloud-based FPGA 
prototyping system is an ideal way for dispersed teams to manage the 
prototyping process and resources. 

Furthermore, as smaller IoT designs proliferate the market, FPGA 
prototyping must become accessible to these designers. Today’s FPGA 
prototyping, although effective, can be costly for smaller IoT designers 
to adopt. The reusability of boards becomes less viable so costs cannot 
be amortized over multiple design starts. By moving to the cloud, FPGA 
prototyping solutions can become a shared resource and thus can 
reduce cost inefficiencies. 

The future of FPGA prototyping is strong. It has and will continue to 
demonstrate itself as one of the most effective solutions to realizing the 
full potential of any design. 

 

Mon-Ren Chene 
CTO of S2C, Inc. 

May 2016 
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Introduction: The Art of the “Start” 

The health of the semiconductor industry revolves around the “start”. 
Chip design starts translate to wafer starts, and both support customer 
design wins and product shipments. Roadmaps develop for expanding 
product offerings, and capital expenditures flow in to add capacity, 
enabling more chip designs and wafer starts. If all goes according to 
plan, this cycle continues. 

In the immortal words of an engineering manager from once upon a 
time, “You didn’t say it has to work.” Chip designs have progressed from 
relatively simple to vastly complex and expensive, and the technology to 
fabricate them has shrunk from dimensions measured in tens of microns 
to tens of nanometers. Functions once dictated by distinctive symbols 
and lines or ones and zeroes in a table now center on executing 
powerful operating systems and application software and streams of 
rapidly flowing data. 

 Keeping the semiconductor cycle moving depends on delivering 
complex chip designs, completely verified with their intended software 
environment, faster and more accurately. Wafer fab facilities now 
approach tens of billions of dollars to construct and equip, producing 
massive high-capacity wafers. One malevolent block of logic within a 
chip design can cause expensive wafers to become scrap. If that flaw 
manages to escape, only showing itself in use at a critical moment, it can 
set off a public relations storm questioning a firm’s design capability. 

Verification is like quality: either it exists, or it does not. Only in a 
context of project management does partial verification of a design 
mean anything. 

With the stakes so high for large, sophisticated chips, no prudent leader 
would dare avoid investments in semiconductor process quality. 
Foundries such as GlobalFoundries, Intel, Powerchip, Samsung, SMIC, 
TSMC, UMC, and others have designed entire businesses around 
producing quality in volume at competitive costs for their customers.  
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Yet, chip design teams often struggle with justifying verification costs, 
settling for doing only part of the job. A prevailing assumption is the 
composite best efforts of skilled designers using powerful EDA tools 
should result in a good design. Reusing blocks from known-good 
sources, a long-standing engineering best practice in reducing risk and 
speeding up the design cycle, helps. 

Any team that has experienced a chip design “stop” knows better. Many 
stories exist of a small error creeping through and putting a chip 
design, and sometimes a reputation, at risk. The price of non-
verification of both hardware and software of a design can dwarf all 
other investments, and instantly thwart any prior success a firm may 
have enjoyed. 

This is where FPGA-based prototyping comes in. A complete verification 
effort has traceable tests for all individual intellectual property (IP) 
blocks and the fully integrated design running actual software (co-
verification), far beyond what simulation tools alone can do in 
reasonable time. Hardware emulation tools are capable, fast, but highly 
expensive, often out of reach for small design teams. FPGA-based 
prototyping tools are scalable, cost-effective, offer improved debug 
visibility, and are well suited for software co-verification and rapid 
turnaround of design changes.  

In this book, we uncover the history of FPGA-based prototyping and 
three leading system providers – S2C, Synopsys, and Cadence. First, we 
look at how the need for co-verification evolved with chip complexity, 
where FPGAs got their start in verification, and why ASIC design 
benefits from prototyping technology. 

A Few Thousand Transistors 
One transistor came to life at Bell Labs in 1947. Solid-state electronics 
held great promise, with transistors rapidly improving and soon 
outperforming vacuum tubes in size, cost, power consumption, and 
reliability. However, there were still packaging limitations in circuit 
design, with metal cans, and circuit boards and wires, and discrete 
passive components such as resistors and capacitors. 1 
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In 1958, Jack Kilby of TI demonstrated a simple phase-shift oscillator 
with one bipolar transistor and roughly hewn resistors and capacitors 
on one slice of germanium, with flying wire connections on the chip. By 
1960, Fairchild teams led by Robert Noyce had a monolithic integrated 
four-transistor flip-flop running in silicon, a more stable and mass-
producible material and process. 2, 3 

Standard small-scale integration (SSI) parts appeared in 1963, with 
Sylvania’s SUHL family debuting as the first productized TTL family. TI 
followed with the military grade 5400 Series and the commercial-grade 
7400 Series, setting off a parade of second-sourcing vendors. In rough 
terms, these SSI parts used tens of transistors providing a handful of 
logic gates. 4 

Medium-scale integration (MSI) first appeared with the 4-bit shift 
register – a part that Irwin Jacobs of Qualcomm fame proclaimed in a 
1970 conference as “where it’s at” for digital design. MSI parts with 
hundreds of transistors extended the productized logic families with a 
range of functions, but were still simple to use. Where SSI parts offered 
several individual gates in a single package with common power and 
ground, MSI parts usually grouped gates into a single functional logic 
block operating on multiple bits of incoming data. Pin counts and 
package sizes remained small. 

SSI and MSI parts are the electronic equivalent of hand-chiseled 
statues. Producing a mask was labor-intensive, with layouts carefully 
planned and checked by engineers. Vendors heavily parameterized 
parts across variables of voltage, temperature, rise and fall time, 
propagation delay, and more. Each chip was a small block of IP, taken 
as golden, assembled into a system using wire wrapping or stitching for 
prototypes or short runs, and printed circuits for finished product in 
higher volumes. Everything about an SSI or MSI design was readily 
visible just by probing with an oscilloscope or logic analyzer at the 
package pins, and problems were usually somewhere in the wires in 
between. 
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Image I-1: Texas Instruments SN74S181N 4-bit ALU with 63 logic gates 

 

That changed drastically when large-scale integration (LSI) parts 
emerged. The early 1970s saw chips for digital watches, calculators, and 
the first integrated computer memories, each with a few thousand 
transistors. LSI parts were analogous to Mount Rushmore – carved 
from the monolith in labor-intensive steps. Parts were harder to verify 
post-layout, and more expensive to fabricate. Packaging changed as 
chips had significantly more I/O pins. Second-sourcing became less 
common as vendors protected their high-value IP. 

Using LSI chips changed as well. The good news was more functions 
were integrated. The bad news was board-level test visibility declined, 
with designers having to trust the data sheet because the inner 
workings of a chip were mostly impenetrable. Chip errata become 
commonplace; instead of fixing the chip layout immediately, vendors 
spent energy on diagnosing issues and determining workarounds, 
waiting to gather enough fixes to justify a chip respin. 
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Microprocessors, ASICs, and FPGAs 
Entire “processors” combined LSI, MSI, and SSI chips. A prime example 
was a Linkabit design in 1971 for a Viterbi decoder – 360 TTL chips on 
12 boards, in a single 4.5U rackmount enclosure replacing a couple 
cabinets of earlier equipment. Assembly language programming took 
shape, with simple instruction sets. This was exactly the transformation 
Jacobs had been talking about, but his firm and many others were 
looking beyond, to bigger chips that consolidated functions. 5 

Image I-2: Intel 4004 microprocessor 

 

Intel moved to the lead in LSI with offerings in DRAM, EPROM, and a 
new type of chip in November 1971: the microprocessor. Its first part 
sprang from a custom product for a Japanese calculator vendor. The 
4004 4-bit microprocessor debuted under the MCS-4 banner, 
including RAM and ROM and a shift register tuned for the 4-bit 
multiplexed bus. With 2300 transistors fabbed in 10 micron and 
running up to 740 MHz, the 4004 had 16 internal registers and offered 
46 instructions. 6 
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Feverish competition ensued as a slew of vendors created new 8-, 16-, 
and 32-bit microprocessor architectures during the late 1970s and early 
1980s. Even with lengthy schedules and meticulous design checking, 
very few of these complex chips worked the first time. Design and fab 
costs continued escalating as transistor counts moved into the tens of 
thousands and beyond. 

Most of these microprocessor vendors had large fabrication facilities 
and proprietary design flows tuned to their engineering standards and 
fabrication process. A sea change was occurring in VLSI (very large 
scale integration), with several technological advances opening the way 
for new vendors.  

The first usage of ASICs was as glue logic for improved integration, or 
as companion chipsets to microprocessors, often customized to a 
specific board design. A growing roster of ASIC vendors eventually 
including AT&T, Fujitsu, IBM, LSI Logic, Plessey, Toshiba, TI, and VLSI 
Technology were working to abstract the design flow with tools, IP 
libraries, and fab qualification. For the first time, design teams at a 
customer could create parts using “standard cells” and get them 
produced at moderate risk and reasonable lead times of a few months. 

The average 32-bit microprocessor trended toward bloated, with more 
transistors to execute maddeningly complex instruction sets (CISC) 
with routine and not-so-routine operations and specialized addressing 
modes. Researchers tore into the flow of instructions, deciding that 
only a few mattered, and came up with the idea of Reduced Instruction 
Set Computing, or RISC. ASICs and RISC were a match made in heaven, 
and MIPS Computer Systems, Sun Microsystems, and others soon burst 
on the scene with new processor architectures. 

Another breakthrough was near. Altera took an idea from the research 
halls of GE, combining the elements of EPROM memory with CMOS 
floating logic gates, and added synthesis software in 1984. A logic 
design for the Altera EP300 could be created on a PC in a week or so 
using schematic capture, state machine, or logic table entries. Parts 
could be “burned”, and easily erased with an ultraviolet light and 
reprogrammed as needed, in a matter of hours. Customers with 



PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design 

7 
 

conventional digital logic schematic entry skills had access to relatively 
high customization with very low turnaround time. 7 

Image I-3: Altera EP300 programmable logic device 

 

A different technology appeared on November 1, 1985, with the 
thundering headline, “Xilinx Develops New Class of ASIC”. The 
XC2064 logic cell array was RAM-based, loading its configuration at 
boot time. Soon to be labeled by the media as a field programmable 
gate array or FPGA, these first parts featured 1200 gates, offering more 
scalability and higher performance. Logic could be simulated on a PC, 
and in-circuit emulation aided in functional verification. 8 

Pre-Silicon Becomes a Thing 
With programmable logic in its infancy, VLSI designs were still 
territory for ASICs. Even moderate risk using ASIC technology was still 
significant. The SPARC I processor took four respins to get right. In 
contrast, the ARM1 processor at Acorn Computers powered up and ran 
on its first arrival from VLSI Technology in April 1985 – a minor miracle 
that shocked its creators, and still stirs amazement. 

EDA tools from pioneers Daisy, Mentor, and Valid were being adapted 
from circuit board design to ASIC tasks. Rather than capturing a design 
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and tossing it into silicon and hoping for good results, more emphasis 
was being placed on logic simulation. EDA workstations were relatively 
fast, but simulation of a VLSI design was still a tedious and slow 
process, requiring skill to create a testbench providing the right stimuli. 
Still, ASIC simulation was cheaper than a failed piece of silicon and 
more dollars and several more months waiting for a fix. 9 

Major innovation was happening at Intel. Thanks to success in PC 
markets, its microprocessor families progressed rapidly. Design of the 
first mainstream PC processor, the 8088 released in 1979, involved 
painstaking human translation of logic gate symbols into transistors. 
For the 80286 debuting in 1982, an RTL (register transfer level) model 
drove high-level design and timing analysis, but manual translation 
into transistor structures was still necessary. The 80386 launched in 
1985 saw wider use of RTL synthesis and a move toward CMOS 
standard cells, with only several specific logic blocks hand optimized. 

If Intel was to keep its winning streak going, development processes 
had to change to shorten the cycle time for increasingly complex parts. 
Beginning in 1986, Intel made a $250M investment for its next 
microprocessor design, including a proprietary system of EDA tools 
and practices. To enable fully automatic synthesis of layout from RTL, 
teams created iHDL, built logic synthesis tools from code developed at 
the University of California, Berkeley, and formalized and extended the 
standard cell library. The result was the 80486, breaking the 1 micron 
barrier with a staggering 1.18M transistors in 1989. 10 

Just as ASIC vendors discovered, Intel found simulation too slow and 
falling further behind. RTL simulations were chewing up more than 
80% of Intel’s EDA computing resources, and verification was growing 
non-linearly with processor size. A solution would come from an 
unexpected source: the FPGA community.  

In May 1988, a small company – Quickturn Systems – introduced a new 
type of development platform aimed at ASIC designers. The Rapid 
Prototype Machine (RPM) used an array of Xilinx XC3090 FPGAs in a 
hypercube interconnect. Its software could take an ASIC netlist of 
hundreds of thousands of gates, partition it into the FPGA array, and 
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emulate the design up to a million times faster than software 
simulation. 11 

Image I-4: Quickturn Systems RPM datasheet 

 

At those speeds, much more serious pre-silicon testing became feasible. 
Intel embraced the concept, putting its new P5 microarchitecture 
through its paces on a cluster of 14 Quickturn RPM systems – 7 for 
integer operations, 4 for caches, and 3 for floating point. In a November 
1991 demonstration, an Intel VP ran a Lotus 1-2-3 spreadsheet on a P5 
model in the Quickturn cluster. Customers considering RISC 
processors shelved plans, opting to wait for Intel to deliver. 12 
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Running trillions of simulation clocks in this environment, Intel was 
able to debug development tools and clobber several errata and various 
operating system incompatibilities before committing to expensive 
silicon. More importantly, the effort sawed several months off their 
development schedule, leading to a timely release of the Pentium 
microprocessor in March 1993. 13 

Enabling Exploration and Integration 
Strictly speaking, although it deployed Xilinx FPGAs and was essential 
in prototyping ASICs, the Quickturn RPM was the first commercial 
hardware emulator. From that point, advanced hardware emulator and 
FPGA-based prototyping platforms developed, on divergent paths for 
different use cases. 

Hardware emulators are automatic, meant for big projects and broader 
application on more than one design. A user need not know details of 
the logic implementation, or how interconnects are organized. An 
arbitrary netlist for an ASIC is loaded, chopped into many smaller 
pieces, and spread out across many partitions – in the beginning, 
implemented with tens or hundreds of FPGAs. 

These partitions are subject to a relationship known as Rent’s Rule, 
describing a necessary ratio of logic gates to interconnect pins. 
Paradoxically, as FPGA logic capacities improved, pin counts fell 
behind and Rentian interconnect limitations worsened, requiring even 
more FPGAs to accommodate large netlists. Eventually, emulator 
providers moved from FPGAs to ASIC-based designs. The price of 
tossing more hardware at the problem is steep, however: today’s high 
performance hardware emulator can cost over $1M. 

Prototypes are more specific, often configured and tuned for one 
project. Assuming adequate logic capacity and interconnect pins, a 
design can be synthesized for a single FPGA target, or perhaps 
partitioned across a handful of FPGAs with optimized interconnect. 
Rent’s Rule becomes less applicable for a design of manageable size. 
This is the basic premise of FPGA-based prototyping, which becomes 
more and more attractive as FPGA logic capacities improve. 14 
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Image I-5: FPGA gates versus pin count, courtesy Cadence 

 

What really makes the case for FPGA-based prototyping is not a change 
in FPGAs, however, but changes in system design practices and 
objectives. The type of design starts typical in the industry evolved 
dramatically, looking less often like an enormous Intel microprocessor. 
System-on-chips, microcontrollers, application-specific standard 
product (ASSPs), and other designs take advantage of a growing field of 
IP for customized implementations. 

Reuse and integration is now paramount. Using FPGA-based 
prototyping, stand-alone verification of individual IP blocks is cost-
effective. Third-party IP, existing internally designed IP blocks, and 
new internal development can then be combined, with partitioning and 
test artifacts reused to aid in the process. 

Design exploration is feasible, especially for software teams that can 
afford to place FPGA-based prototyping platforms on desks. What-if 
scenarios run at IP-block level can explore software tradeoffs or minor 
hardware architectural tradeoffs, not just functional fixes. These results 
can be rolled up quickly to the full-up design, perhaps resulting a 
critical product enhancement pre-silicon. 

More FPGA-based prototyping platforms are integrating actual I/O 
hardware, usually with a mezzanine-based approach, instead of 
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emulating I/O with a rate-adapter of some type. This is an important 
factor for complex interface and protocol verification. It can also be a 
deciding factor in safety-critical system evaluation, where validation 
using actual hardware is essential. 

At the high end, FPGA-based prototyping is scaling up. Platform-aware 
synthesis is improving partitioning across multiple FPGAs, allowing 
larger ASIC designs to be tackled. Cloud-based technology is 
connecting platforms and designers via networks. Debug visibility is 
increasing, with approaches including deep-trace capture and 
automatic probe insertion. Integration with host-based simulation and 
graphical analysis tools is also improving steadily. 

The inescapable conclusion is if a chip project is to “start”, it had better 
finish with robust silicon quickly. New applications, particularly the 
Internet of Things, may reverse a trend of declining ASIC starts over 
the last decade. Design starts are likely to be smaller and more 
frequent, with highly specialized parts targeting niches. Advanced 
requirements in power management, wireless connectivity, and 
security are calling for more intense verification efforts.  

FPGA-based prototyping, as we shall see shortly, is rising to these 
challenges for a new era of chip design. 
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Chapter 1: SoC Prototyping Becomes Imperative 

Electronic design was changing in the mid-1980s. Brute force schematic 
capture was being supplanted by logic synthesis from hardware 
description language. Wire wrapping or stitching techniques for 
prototyping were being rendered obsolete as denser, higher pin count 
packages appeared. Printed circuit board technology was advancing 
rapidly, hand in hand with microprocessors, more complex ASIC parts, 
and new FPGA technology. 

Competing to launch products on time meant creating chip designs 
faster. While hardware emulation proved very useful in ASIC 
verification, it was prohibitively expensive for smaller use cases. 
Sometimes, students and engineers just wanted to tinker with a design 
in a lab to prove a concept, or had only small production volumes in 
mind. If a project could bear the moderate cost of an FPGA, it was an 
ideal vehicle for experimentation. Two new use cases emerged for 
FPGAs: reconfigurable computing, and rapid prototyping. 

Programmable Logic in Labs 
Reconfigurable computing was the holy grail for signal processing, an 
ideal application for FPGAs with DSP-like primitives. An FPGA card 
could be added as a co-processor to an engineering workstation, and its 
logic architected to provide efficient data flow computational 
capability. The same workstation and FPGAs could be reconfigured for 
different applications quickly, especially if Xilinx SRAM-based FPGA 
technology were used. 

Prime examples of early reconfigurable computing platforms were 
Splash 1 and Splash 2, originally created to perform DNA sequence 
comparison. Created in 1988, Splash 1 was a VMEbus system with 32 
Xilinx XC3090 FPGAs in a linear systolic array. While powerful, the 
Splash 1 architecture quickly proved to be limited by the available 
FPGA interconnect, typically in the range of 200 to 300 pins and 
subject to clocking and delay variables. 

Splash 2 began in 1991, upgrading to XC4010 FPGAs with a crossbar 
interconnect. It allowed chaining of up to 16 array boards each with 16 
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processing FPGAs (with a 17th part controlling the crossbar), and added 
an SBus adapter for easy connection to a Sun Microsystems 
SPARCstation. 15 

Image 1-1: Splash 2 block diagram 

 

Interconnect in hardware emulators and reconfigurable systems was 
becoming a hot topic. A new technology debuted in 1992, the Aptix 
FPIC (field programmable interconnect chip). Aptix parts used similar 
SRAM-based technology to provide around 1000 interconnect pins 
sans logic, somewhat relaxing Rent’s Rule limitations and allowing 
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much more flexible configurations on a printed circuit board. FPICs 
were expensive, however, due to their high pin count packages. 16 

Academic researchers took these concepts in a new direction, scaling 
down to run HDL chip designs of a few thousand gates in smaller 
FPGA-based rapid prototype boards. The idea behind rapid prototyping 
was software would run immediately with full fidelity to production 
silicon – or not. If the project did not have access or could not afford to 
fabricate a chip, a rapid prototype could still prove the validity of the 
concept. 

The first of these rapid prototyping boards appearing in 1990 was the 
AnyBoard from North Carolina State University. It returned to a simple 
linear array of five Xilinx XC3090s and soon added automated circuit 
partitioning built on Xilinx place & route software. The partitioning 
software understood interconnect pins, clock rates, and logic and I/O 
constraints. Researchers compared gradient descent algorithms with a 
multi-bin version of Kernighan and Lin graph partitioning, testing 
designs of varying complexity. 17 

Also in 1990, researchers at Stanford University created Protozone, a 
single Xilinx FPGA on a PC add-in card for experimentation. Protozone 
became a jumping-off point for other research projects in FPGA 
programming, but as a degenerate single-part configuration it did little 
to advance partitioning and routing science. However, it did spur 
broader educational programs at both Altera and Xilinx to provide 
simple, low-cost FPGA boards for prototyping. 18 

From the University of California, Santa Cruz came the aptly named 
BORG in 1992. Two Xilinx FPGAs contained logic, two more held 
reconfigurable routing, and a fifth performed configuration and 
interfacing to a PC host. Much of the research focused on the problem 
of pin assignment using bipartite graphs and new algorithms for a two-
commodity flow solution. (In a bit of irony, the first BORG prototype 
itself was wire wrapped.) BORG illustrated the complexity of 
programmable interconnect between parts even with relatively small 
FPGA packages. 19 
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Another single-chip Xilinx XC3030 implementation debuted in 1993, 
the Generic Reusable Module (GERM) from Duke University. 
Researchers were promoting rapid design and prove out of subsystems, 
with concepts of VHDL design and IP reuse. Students were encouraged 
to build realistic designs in smaller pieces, then reuse those concepts 
for larger projects in subsequent courses that could still be completed 
in a semester. 20 

The growing popularity of the Aptix FPIC influenced the design of the 
Transmogrifier-1 at the University of Toronto in 1994. It indirectly 
scaled up the BORG concept, with four more powerful Xilinx XC4010 
FPGAs interconnected by two FPICs, and a fifth FPGA providing the 
interface to a SPARCstation. Researchers used the platform to speed 
designs of three example projects: a Viterbi decoder, a memory 
organizer that emulated various configurations, and a logarithmic 
number system processor. Using SRAM blocks in the FPGAs allowed 
algorithm optimization compared to full-custom chip designs (multi-
chip modules using FPGA dies), resulting in higher clock speeds and 
other implementation insights that were fed back to future modules. 21 

Image 1-2: Transmogrifier-1 block diagram 

 

First Productization of Prototyping 
These research projects were stimulating broader interest and 
exploring critical issues in FPGA-based prototyping, but were far from 
ready for prime time. Hardware emulation still had a significant head 
start in commercialization. 
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Aptix CEO Amr Mohsen reflected on the early business challenges with 
the FPIC parts, saying they were “probably two to three years ahead” 
and being asked by customers to move into complete, turnkey 
hardware emulation. At the Design Automation Conference in June 
1994, Aptix launched two products. Explorer ASIC targeted single-chip 
emulation at 10 MHz using 21 Xilinx XC4000-class FPGAs and FPICs 
for interconnect, with automatic partitioning software provided by 
third party Software & Technologies. System Explorer MP3 provided 
general-purpose 50 MHz system-level emulation with configurable 
FPGA payloads and I/O, but lacking automatic partitioning tools. 
Automation would be added later with the System Explorer MP4 family 
in May 1996. 22, 23 

Image 1-3: Aptix System Explorer MP4 

 

IKOS Systems bought its way into the hardware emulation market by 
acquiring Virtual Machine Works in May 1996. The VirtuaLogic SLI 
hardware emulator was productized and released by late 1996 with a 
basic 200K gate capacity upgradable to over 1M gates. VirtualWires 
technology created at MIT provided synthesis for FPGAs, avoiding a 
need to move toward ASICs as other vendors were doing. 24 

Major EDA players then moved in and competition got a bit ugly.  
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Meta Systems created the SimExpress emulator family in 1994, and 
after shopping itself to both Quickturn and Mentor Graphics agreed to 
a Mentor acquisition in May 1995. By early 1996, Quickturn and Mentor 
Graphics were involved in suit and countersuit over technology (some 
previously licensed to Quickturn in 1992), blocking sales of Meta 
Systems emulation platforms in the US for several years. 

Mentor Graphics then licensed emulation technology from Aptix and 
promptly sued Quickturn again in 1998, unfortunately based on bogus 
claims in an Aptix engineering notebook. In a bid to resolve the patent 
issues, Mentor Graphics launched a hostile takeover for Quickturn in 
early 1998. It drew the attention of Cadence Design Systems, who 
raised the takeover offer to $253M and secured Quickturn by December 
1998. Legal wrangling continued. 25 

With the hardware emulation providers locked in expensive battles 
over high end platforms, the door was open for lower cost solutions 
from smaller providers. Gidel, based in Israel, converted its expertise in 
FPGA-based reconfigurable computing to a commercial FPGA-based 
ASIC prototyping board in 1998 featuring an Altera FPGA. Also in 1998 
The Dini Group in the US took its ideas from ASIC design consulting 
into its first commercial FPGA-based prototype board, the DN250k10 
with six Xilinx XC4085 FPGAs. 26, 27 

ASIC complexity in both gate and pin counts had overwhelmed most 
FPGA implementations, even attempts with programmable 
interconnect. HARDI Electronics AB, a small Swedish firm, 
reinvestigated the problem and decided to route FPGA I/O to high 
speed connectors leading off board. By insuring impedance and trace 
length matching, external cabling could be used to complete 
connections in the desired configuration. The result was the first 
HARDI ASIC Prototyping System (HAPS) created in 2000, based on 
the Xilinx Virtex FPGA. To get larger configurations, HARDI began 
work on a board stacking scheme and bus interconnect – HapsTrak. 

Fabless and Design Enablement 
The third major change in the industry was the rise of ARM processor 
core technology and a corresponding increase in foundry capability. 
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Powered largely by the meteoric rise of the ARM7TDMI core 
introduced in 1995, designers outside of the traditional semiconductor 
companies were gaining confidence in their ability to create producible 
chips, entirely fabless. 28 

ARM understood that as their IP became more complex and foundries 
became more diverse, they needed to foster tools and methodology 
enabling their design customers to succeed. At first, ARM scaled via 
consulting in efforts led by Warren East beginning in 1994. Next, ARM 
introduced the Advanced Microcontroller Bus Architecture (AMBA) in 
1997, seeking to standardize interconnect and make IP integration 
easier. 

Image 1-4: AMBA system and peripheral buses, courtesy ARM 

 

Then, ARM cores became fully synthesizable. The impetus was an effort 
at ASIC vendor LSI Logic who launched a CoreWare synthesizable 
version of ARM7TDMI in late 1997. ARM soon responded with 
standard synthesizable versions of its ARM7TDMI-S core and 
ARM946E-S and ARM966E-S macrocells, opening choices for using 
industry-standard EDA tools. By 2000, both TSMC and UMC had 
joined the new ARM Foundry Program and taken “per use” licenses. 

Also in 2000, ARM made a strategic equity investment in CoWare and 
its IP models with an eye on providing more accurate simulations of 
the processor core. While useful, simulation was slow and models 
scarce, especially for many third-party peripheral IP blocks. Hardware 
emulation tools were prohibitively expensive for third-party peripheral 
block designers, often very small shops.  
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However, a bigger opportunity was developing. An IP block could be 
fully tested standalone, but when integrated into a larger system-on-
chip with other peripheral blocks, new issues would develop. Either 
simulation would fail to uncover at-speed problems, or interaction 
between blocks would expose conditions untested in the standalone 
case. 

The solution for affordable, faster, more complete testing of both IP 
blocks and integrated SoC designs was becoming FPGA-based 
prototyping. Both startups and larger EDA firms sought to capitalize on 
the trend.
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Chapter 2: How S2C Stacked Up Success 

Startups are often pure-plays focused on a particular technology. When 
a new market opportunity appears, it is often startups who are able to 
move in first. Expertise gained in a previous round of technology 
development can propel a startup, with a new brand and strategy, from 
obscurity into prominence.  

FPGA-based prototyping systems presented just such an opportunity. 
The groundswell in the IP ecosystem and the addition of foundry 
players in Asia brought a new audience of SoC designers into the mix. A 
wave of Asian firms, or Asian design centers for companies based in the 
US and Europe, were among the first ones open to new ideas and new 
EDA tools from a new innovator. 

Making ESL Mean Something 
Aptix had delivered outstanding FPGA interconnect technology, but as 
its legal issues deepened, it lost focus and became unable to compete 
for new business. By 2003 its key talent was defecting, ready to take the 
lessons learned from the reconfigurable computing days elsewhere. 

Three ex-Aptix principals, Thomas Huang, Mon-Ren Chene, and 
Toshio Nakama pooled their own money to form S2C, Inc. – a creative 
spin on “system to chip”. Based in San Jose, California, the vision for 
S2C was helping accelerate time-to-success for SoC design companies. 
To do that, S2C would need to build a new organization, and carefully 
craft and document their intellectual property to avoid the quagmire 
their previous engagement became mired in.  

Focusing on the Chinese market as a major opportunity, S2C quickly 
set up its first offshore research and development center in Shanghai in 
2003. This not only provided a talent pool, but also offered a way to 
connect and service customers based in Asia. Since the methodology 
behind FPGA-based prototyping was fairly new, and design teams using 
it were often working on small- or medium-sized projects, there would 
be a fair amount of customer handholding required. 
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S2C was essentially in stealth mode for nearly two years. One of the key 
problems in making the leap from reconfigurable computing to FPGA-
based prototyping was the tools used with FPGAs and the IP that went 
inside.  

The buzzword making the rounds in EDA circles at the time was ESL: 
electronic system-level design. The idea of ESL sounded great on paper, 
bringing together approaches using high-level hardware descriptions 
with hardware and software co-design strategies and adding virtual 
prototyping and co-verification. (It was a lot of buzzwords inside 
buzzwords.) EDA vendors were scrambling to unify their tool suites 
and create a cohesive flow that shared design data and results. 

FPGA tools were different, even foreign to most ASIC designers. For 
many, although the benefits of prototyping were increasing, the extra 
steps in becoming familiar with FPGA synthesis and debug were 
troubling. Worse yet, FPGA IP blocks were usually tuned for FPGA 
constructs. Steps to obtain logic and timing closure in FPGAs were 
different from those in ASICs. Concerns over the fidelity of an FPGA-
based prototype were valid; if too much effort was required to resolve 
differences when moving a design back into an ASIC flow, the time-to-
success gains from prototyping and exploration would be undone. 

S2C’s first task was to develop a complete methodology – a set of tools 
and IP that would not only make FPGA-based prototyping more 
productive, but would smooth out the transition of a design from the 
prototyping stage back into an EDA flow bound for an SoC. 

TAI IP and “Prototype Ready” 
In February 2005, S2C filed its patent for a “Scalable reconfigurable 
prototyping system and method.” It described a system for automating 
validation tasks for SoCs, with a user workstation, data communication 
interface, and an emulation platform with multiple FPGAs plus 
interfaces to a real-world target system. Its key observation was that 
SoC designs were composed of multiple IP blocks, and those could be 
synthesized from HDL into FPGAs, but needed some standardized 
method to communicate with a host for download, debug, and 
modification. 29 
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A few months later, they gave a name to the concept: Testable, 
Analyzable, and Integratable IP, or TAI IP for short. A TAI IP block 
contained dynamically reconfigurable tag memory, multiplexers, 
buffers and latches, and could be added to user IP blocks to allow 
control and incremental run-time configuration. Both debug and 
performance analysis modes existed; for instance, a bandwidth analyzer 
mode could gather information on throughput and latency. 30 

This allowed S2C to deliver a cohesive design flow. A top-level design 
including imported modules from HDL or netlists could be 
synthesized, assigned symbols, partitioned into FPGAs, automatically 
instrumented with TAI IP blocks, and placed and routed. Software 
development could begin as soon as a prototype was ready, including 
using the SoC prototype to communicate with a target interface at 
hardware speeds – a nearly impossible task using only host-based 
simulation. 

In May 2005, S2C announced its first product at the Design 
Automation Conference (DAC). The IP Porter system supported SoC 
designs of up to 3M gates with four Xilinx XC2VP100 FPGAs. It 
connected to a host via USB 2.0, where the TAI Compiler and 
Navigator software packages ran. TAI Compiler automated creation of 
TAI IP modules and libraries, including encryption if desired. Navigator 
provided links to System C models and SCE-MI transactors connecting 
event-driven simulation tools on the host with points in the FPGA-
based prototype. 

Beta customers working with the product estimated their design time 
was cut by 3 to 6 months. Productivity gains came not so much from 
the initial setup of a prototype, but from a significant reduction in 
iteration time as debug and analysis uncovered changes and 
improvements. TAI IP enabled reconfiguring only the part of the design 
where changes were made, speeding up the synthesis. 
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Image 2-1: S2C IP Porter 

 

Second-generation product beginning in 2006 moved to a new 
hardware arrangement with high-performance Mictor connectors 
allowing stacking of TAI logic module boards each with one or two 
Xilinx Virtex-4 FPGAs. These connectors also enabled direct addition of 
a library of expansion modules for memory, video and audio interfaces, 
logic analyzer breakouts, and more, and allowed customer I/O designs 
to be added easily. 

2007 brought new IP partners, most notably processor core vendors 
Tensilica and CAST. Work continued on SCE-MI with Hitachi and 
other co-modeling projects with Asian customers, and a new office 
opened in Shenzhen to support the growing SoC community in China. 
In 2008, the TAI IP patent was granted in the US, and the TAI logic 
modules received the latest Xilinx Virtex-5 FPGAs. Host software was 
unified under the TAI Player name, with expanded logic analysis and 
SCE-MI co-modeling. 31 
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By 2010, the fourth generation logic module based on dual Xilinx 
Virtex-6 FPGAs appeared, along with a first – support for Altera FPGAs 
with a dual Stratix IV Logic module, unique among the major FPGA-
based prototyping vendors. Design sizes accommodated on a single 
module topped 15M gates, and module stacking pushed that higher. 
More modules were added to the accessory library, including PCIe and 
Gigabit Ethernet. Larger Altera-based systems released in 2011, with the 
Quad S4 TAI Logic Module carrying four Altera Stratix IV 820 FPGAs 
upping the capacity to 32.8M gates. 32, 33, 34 

Image 2-2: S2C Quad S4 TAI Logic Module 

 

To handle larger designs and faster verification, S2C also announced a 
x4 PCIe Gen2 host interface board in 2011, and continued expansion of 
its Prototype Ready accessory library. Xilinx Virtex-7 logic modules 
released in 2012, along with ARM1176 and ARM926 Global Unichip 
Corporation (GUC) Test Chip modules with external AMBA interfacing 
for ARM designers to quickly incorporate merchant cores. 35, 36, 37  

2013 saw the addition of more logic modules based on the Xilinx Zynq-
7000 All Programmable SoC with its integrated dual ARM Cortex-A9 
cores. With up to four Zynq-7000 parts on one board, plus a high-
frequency LVDS pin multiplexing scheme, a single board could handle 
up to 80M gates. New Prototype Ready modules added HDMI, GTX 
transceiver interfacing, and other support around the Zynq-7000. 
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ProtoBridge AXI capability came in 2014, providing native AXI 
transactors suitable for advanced ARM designs and other IP adopting 
AXI. 38, 39 

Image 2-3: S2C ProtoBridge software environment 

 

Taking on the Cloud 
S2C continues its expansion under founders Nakama, now CEO, and 
Chene, now Chairman and CTO. In 2014, new offices opened in Japan 
and Korea, and a round of $4.6M Series C financing reinforces R&D and 
sales and support channels development. Keeping pace with the Xilinx 
roadmap for larger and faster parts, including the latest Virtex 
UltraScale 440 FPGA, is just part of the strategy. 

In April 2015, S2C announced a new brand: Prodigy. In many ways, the 
story remains the same under a new name. Prodigy unifies the offering 
of FPGA logic modules, Player Pro partitioning and configuration 
software, ProtoBridge system-level simulation link tool, and the library 
of Prototype Ready modules now numbering over 80 designs. In other 
ways, Prodigy marks a new beginning. 40 
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Image 2-4: S2C Prodigy Complete Prototyping 

 

For DAC 2015 in June, ten years after introducing its first product to 
the public, S2C unveiled a new concept in scalability. Prodigy Cloud 
Cube introduces a capacity breakthrough providing up to 1.4B gates in 
a single chassis with up to 32 FPGAs. Simultaneous access for up to 16 
engineers is supported, with remote access via Ethernet. Configuration 
of the platform itself is automatic, with detection of installed logic 
modules, cabling, and daughter cards, along with self-tests to isolate 
issues. 41 

S2C’s focus on Asia continues to increase, with a new R&D and 
manufacturing center in Taiwan opened in October 2015. With energy 
in mobile shifting from flagship smartphones into mid-range devices, 
and new ideas appearing daily in wearables and the IoT, more designs 
are starting with a wider variety of hardware IP and software support. 
Asia is at the epicenter of many of these changes, increasing the need 
for a distributed FPGA-prototyping solution made for design teams and 
IP providers to collaborate from wherever they happen to be based. 

Scalability also remains important. Single FPGA logic module solutions 
are now large enough to hold many designs. The ability to use the same 
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tool set and FPGA-based prototyping methodology from the latest 
Single KU115 Prodigy Logic Module introduced in January 2016 all the 
way up to the Prodigy Cloud Cube is essential for SoC design team 
productivity. 42 

Image 2-5: S2C Cloud Cube 32 

 

Now serving over 200 customers, S2C has delivered innovation by 
staying close to its users. Extra handholding required in the first 
generation has now turned into a competitive advantage in later 
generations. By looking closely at each step in the SoC design phase, 
enhancements in S2C FPGA-based prototyping tools are discovered, 
removing friction and increasing capability and efficiency. 
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Chapter 3: Big EDA Moves In 

Larger EDA firms are constantly hunting for other product lines to fill 
out their portfolios. With ASIC and SoC starts accelerating, and smaller 
firms becoming successful with FPGA-based prototyping technology, 
the large firms started seeing a gap in their offering. The trick in a large 
firm acquiring a small firm is to make those focused tools fit in the 
bigger picture.  

In the case of FPGA-based prototyping, first came an acquisition of one 
of its pioneers by another FPGA tools vendor, which was then in turn 
swallowed up by a large EDA firm. Those product lines were rebranded, 
then expanded. When a comprehensive strategy for FPGA-based 
prototyping systems was published, it drew an immediate a response 
from a major competitor. As the need grows, competition is heating up. 

A Laurel and HARDI Handshake 
In 1987, the IEEE ratified the initial version of its standard IEEE 1076-
1987, VHSIC Hardware Description Language. EDA firms rushed to 
embrace VHDL technology, both to satisfy its major backer – the US 
Department of Defense and in particular the US Air Force – and to 
capture the benefits of a high-level language for design and simulation 
of ASICs. 43 

Consultants in VHDL instantly sprang up. One of those firms was 
HARDI Electronics AB, launched shortly after the original release of the 
IEEE standard in 1987. HARDI quickly produced its first all-VHDL 
design within a few months. They went on to develop extensive 
expertise, publishing its VHDL Handbook in 1997 reflecting the 
updated VHDL ’93 version of the standard. 44 

As VHDL usage grew, so did the size of ASIC designs performed using 
it. Simulation, though effective, was falling behind in terms of 
providing enough speed to run the necessary verification tests on a 
larger ASIC. Moving the verification tasks into hardware became the 
path forward.  
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In 2000, HARDI took the next logical step, creating the HARDI ASIC 
Prototyping System. For several years, the system then just known as 
HAPS was used in consulting activity for ASIC customer engagements. 
HARDI coordinated closely with both Xilinx and a relatively new firm 
formed in 1994, Synplicity, for FPGA synthesis and debug technology 
including Synplicity’s Certify and Identify. 

Demand for the HAPS platform rose over the next several years to the 
point where HARDI began more aggressive external marketing, 
launching version 2.1 of HAPS (soon to be rebranded as HAPS-10) at 
the Design Automation and Test in Europe show in March 2003. HAPS 
2.1 held up to four Xilinx Virtex-II 8000 FPGAs providing a total of up 
to 8M gate capacity running at up to 200 MHz. 45 

Image 3-1: HARDI Electronics AB HAPS-FPGA_2x3 

 

HARDI launched its product in the US at the Design Automation 
Conference in June 2003, and soon found a major customer in Texas 
Instruments. A low end version, the single FPGA HAPS-FPGA_2x3 
accommodating up to 1M gates, introduced the idea of stackable 
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prototyping modules – with an early version of the HapsTrak 
interconnect – for scalable capacity and expansion. HAPS-FPGA_2x3 
also had 120 low voltage differential signaling (LVDS) pairs for high-
speed I/O. 46 

The second-generation HAPS-20 debuted in December 2004 with a 
quad Xilinx Virtex-II Pro configuration, again stackable via HapsTrak. 
It focused on I/O speed, providing 80 multi-gigabit serial links and 
1600 LVDS pairs. The Virtex-II Pro FPGAs also each carried two IBM 
PowerPC RISC processor cores for real-time software. User I/O was 
divided into three voltage regions so separate voltages could be used 
simultaneously. HAPS-20 added built-in self-test capability to assure 
users of system integrity. 47 

Xilinx Virtex-4 parts appeared on the third-generation HAPS-34 at the 
ARM Developers Conference in October 2005, a sign that adoption of 
FPGA-based prototyping among SoC designers was accelerating. HAPS-
34 delivered quad FPGAs with 9 I/O voltage regions. Smaller versions 
quickly appeared, with the single HAPS-31 and the dual HAPS-32 added 
in March 2006, all based on HapsTrak for stacking “like LEGO™ 
blocks” as the HARDI PR team put it. 48, 49, 50 

Verification is Very Valuable 
For the fourth generation, HARDI made a break with their logical 
nomenclature, instead skipping to the HAPS-50 series with an 
introduction in April 2007. The HAPS-52 featured a pair of Xilinx 
Virtex-5 LX330 FPGAs. It was basically more of the same approach; 
however, the quad board was not yet available, with only a reference to 
more boards available in two months. 51 

Almost two months to the day later came a much more surprising 
announcement. The HAPS-50 news included a quote on the growing 
partnership between HARDI and Synplicity, including the addition of 
the new Total Recall debugging technology. The partnership cemented 
on June 1, 2007 with the news that Synplicity was acquiring HARDI for 
$24.2M in cash. 52 
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In turn, the new and improved Synplicity was suddenly on radar of one 
of the big three EDA firms: Synopsys. In a slightly more complicated 
transaction since Synplicity was publicly traded, Synopsys paid around 
$227M to acquire Synplicity on March 20, 2008. HAPS was now a 
Synopsys brand. 53 

Synopsys took a breath to integrate HAPS into their development flow, 
creating the Confirma Rapid Prototyping Platform including the 
Synplicity suite and CHIPit technologies acquired from Pro Design in 
2008. Syncing up with Xilinx for the Virtex-6 FPGA, Synopsys released 
the HAPS-60 in April 2010 with a capacity of up to 18M gates. Synopsys 
began using the HAPS environment for their own DesignWare IP, and 
was able to pass through those artifacts to customers. They also added 
support for the UMRbus, a high-speed host interface allowing co-
simulation with a HAPS platform. 54 

Image 3-2: Synopsys HAPS-64 

 

HAPS-70 appeared in November 2012 with the Xilinx Virtex-7 2000T 
on nine model variants. An upgrade to HapsTrak 3 improved time-
domain pin multiplexing, and the Certify software became “HAPS-
aware” understanding partitioning and interconnect needs of the 
hardware, resulting in a 10x productivity improvement. Deep Trace 
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Debug was added with a DRAM module to capture more real-time 
signals with complex triggering. The UMRbus was also upgraded to 
support up to 400 MB/sec transfers. 55 

Capacity had long been an objective of HAPS, keeping pace with each 
successive Xilinx FPGA release. The efforts with DesignWare IP and 
customers showed how valuable smaller FPGA-prototyping platforms 
could be, easy to set up for a software developer to work on code or for 
an IP block developer to work on a single piece of IP prior to 
integration. Streamlining the larger HAPS-70 platform resulted in the 
HAPS Developer eXpress, or HAPS-DX, in December 2013. HAPS-DX 
added an FMC interface for industry-standard daughterboards to add 
I/O, and ProtoCompiler (formally released in April 2014, replacing the 
short-lived Confirma tools) extending the flow and hardware awareness 
in software tools. 56, 57 

An Either-Or Response 
In March 2011 after working in conjunction with Xilinx, Synopsys 
released the FPGA-Based Prototyping Methodology Manual. Mentor 
Graphics was (and is) still focused on hardware emulation technology. 
The third member of the big three, Cadence, was also in hardware 
emulation but needed some kind of response to the growing FPGA-
based prototyping movement. 

Cadence had focused on design of FPGA boards themselves. After a 
multi-year technology agreement proved the concept, Cadence decided 
to acquire Taray and their FPGA design-in solution in March 2010. 
Taray pioneered route-aware pin assignment synthesis, optimizing an 
FPGA design together with the circuit board. This would form an aid 
for designing an FPGA-based prototyping platform. 58 

The formal response to Synopsys came in a Cadence white paper, “ASIC 
Prototyping Simplified”, in April 2011. In it, they questioned the 
approach of an off-the-shelf FPGA board to meet a wide variety of ASIC 
prototyping needs. They suggested instead that customized FPGA 
boards be built matching the needs of each project, of course using 
Cadence tools. 59 
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It was a time-buying maneuver, just to get the industry talking. A 
month later in May 2011, Cadence announced a strategy for “app-
driven” electronics within its bigger EDA360 vision going beyond just 
co-verification. Part of that was a new Rapid Prototyping Platform, a 
family of FPGA boards based on Altera Stratix IV devices. Cadence was 
attempting to unify its tools and flows, so that a customer could choose 
either hardware emulation or FPGA-based prototyping and migrate 
back and forth as needed. 60 

Image 3-3: Cadence Protium 
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A Bright Future Ahead 
Cadence has a lot of ground to make up in FPGA-based prototyping, 
but is making investments to try to do just that. In July 2014, they 
introduced the second-generation Protium rapid prototyping platform, 
curiously moving to Xilinx Virtex-7 2000T FPGAs matching the 
competition and increasing capacity by 4x over the first-generation 
product. The bring-up flow between Palladium hardware emulation 
and Protium FPGA-based prototyping was further refined, with 
productivity gains for customers using both environments. 61 

Synopsys has stayed its course as one of the leaders in the field. Moving 
into the Xilinx UltraScale generation, HAPS-80 launched in September 
2015. Synopsys says this gets them to 1.6B ASIC gates with stacked 
HAPS-80 modules, supported with an improved ProtoCompiler 
handling the high-speed time-division multiplexing awareness. HAPS-
80 runs at 300 MHz for a single FPGA, 100 MHz with non-pin-
multiplexed multi-FPGAs, and 30 MHz with pin multiplexing. 

Image 3-4: Synopsys HAPS-80 
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Combined with the efforts of S2C and others including Aldec, The Dini 
Group, HyperSilicon, Pro Design Electronic GmbH, ReFLEX, and even 
small prototyping systems from ARM, these developments have moved 
the art of FPGA-based prototyping systems forward. Next, we’ll take a 
look at where the technology is headed and how designers in segments 
enjoying a renaissance of design starts can benefit from the ideas. 

  



PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design 

43 
 

NOTES

43 “1076-2008 – IEEE Standard VHDL Language Reference Manual”, 
IEEE Standards Association, 
https://standards.ieee.org/findstds/standard/1076-2008.html  
44 “VHDL Handbook”, HARDI Electronics AB, 1997, 
http://www.csee.umbc.edu/portal/help/VHDL/VHDL-Handbook.pdf  
45 “HARDI Electronics Releases a Real-Time ASIC Prototyping Platform 
at DATE”, HARDI Electronics AB press release, March 3, 2003, 
http://www.businesswire.com/news/home/20030303005294/en/HAR
DI-Electronics-Releases-Real-Time-ASIC-Prototyping-Platform  
46 “HARDI Electronics Releases a New Single-FPGA Module in the 
HAPS Prototyping Family”, HARDI Electronics AB press release, 
December 2, 2003, 
http://www.businesswire.com/news/home/20031202005773/en/HAR
DI-Electronics-Releases-Single-FPGA-Module-HAPS-Prototyping  
47 “HARDI Electronics Unveils Second Generation ASIC Prototyping 
Platform”, HARDI Electronics AB press release, December 13, 2004, 
http://www.businesswire.com/news/home/20041213005828/en/HARD
I-Electronics-Unveils-Generation-ASIC-Prototyping-Platform  
48 “HARDI Electronics Unveils Industry's Most Advanced ASIC 
Prototyping Platform at the ARM Developers Conference”, HARDI 
Electronics AB press release, October 4, 2005, 
http://www.businesswire.com/news/home/20051004005734/en/HAR
DI-Electronics-Unveils-Industrys-Advanced-ASIC-Prototyping  
49 “How to Make an ASIC Prototype”, Lars-Eric Lundgren, HARDI 
Electronics AB, Electronic Engineering Journal October 18, 2005, 
http://www.eejournal.com/archives/articles/20051018_hardi/  
50 “HARDI Electronics Announces Two New Motherboards in The 
HAPS ASIC Prototyping Family at DATE 2006 (Booth A1)”, HARDI 
Electronics AB press release, March 6, 2006, 
http://www.businesswire.com/news/home/20060306005867/en/HAR
DI-Electronics-Announces-Motherboards-HAPS-ASIC-Prototyping  
51 “HARDI announces FPGA-based HAPS-50 prototyping system”, Max 
Maxfield, EETimes, April 4, 2007, 
http://www.eetimes.com/document.asp?doc_id=1304157  
52 “Synplicity Announces Agreement to Acquire HARDI Electronics 
AB”, Synplicity press release, June 1, 2007, 

 

https://standards.ieee.org/findstds/standard/1076-2008.html
http://www.csee.umbc.edu/portal/help/VHDL/VHDL-Handbook.pdf
http://www.businesswire.com/news/home/20030303005294/en/HARDI-Electronics-Releases-Real-Time-ASIC-Prototyping-Platform
http://www.businesswire.com/news/home/20030303005294/en/HARDI-Electronics-Releases-Real-Time-ASIC-Prototyping-Platform
http://www.businesswire.com/news/home/20031202005773/en/HARDI-Electronics-Releases-Single-FPGA-Module-HAPS-Prototyping
http://www.businesswire.com/news/home/20031202005773/en/HARDI-Electronics-Releases-Single-FPGA-Module-HAPS-Prototyping
http://www.businesswire.com/news/home/20041213005828/en/HARDI-Electronics-Unveils-Generation-ASIC-Prototyping-Platform
http://www.businesswire.com/news/home/20041213005828/en/HARDI-Electronics-Unveils-Generation-ASIC-Prototyping-Platform
http://www.businesswire.com/news/home/20051004005734/en/HARDI-Electronics-Unveils-Industrys-Advanced-ASIC-Prototyping
http://www.businesswire.com/news/home/20051004005734/en/HARDI-Electronics-Unveils-Industrys-Advanced-ASIC-Prototyping
http://www.eejournal.com/archives/articles/20051018_hardi/
http://www.businesswire.com/news/home/20060306005867/en/HARDI-Electronics-Announces-Motherboards-HAPS-ASIC-Prototyping
http://www.businesswire.com/news/home/20060306005867/en/HARDI-Electronics-Announces-Motherboards-HAPS-ASIC-Prototyping
http://www.eetimes.com/document.asp?doc_id=1304157


PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design 

44 
 

 
http://www.sec.gov/Archives/edgar/data/1027362/000119312507129831
/dex991.htm  
53 “Synopsys to Acquire Synplicity, Inc.”, Synopsys press release, March 
20, 2008, http://news.synopsys.com/index.php?item=122910  
54 “Synopsys Introduces the HAPS-60 Series of Rapid Prototyping 
Systems”, Synopsys press release, April 19, 2010, 
http://news.synopsys.com/index.php?s=20295&item=123150  
55 “New FPGA-Based Prototyping Solution Delivers Up to 3x System 
Performance Improvement”, Synopsys press release, November 12, 
2012, http://news.synopsys.com/index.php?s=20295&item=123433  
56 “Synopsys Extends HAPS-70 Prototyping Family with New Solution 
Optimized for IP and Subsystems”, Synopsys press release, December 
16, 2013, http://news.synopsys.com/2013-12-16-Synopsys-Extends-
HAPS-70-Prototyping-Family-with-New-Solution-Optimized-for-IP-
and-Subsystems  
57 “Synopsys' New ProtoCompiler Software Speeds Time to First 
Prototype by Up to 3X”, Synopsys press release, April 23, 2014, 
http://news.synopsys.com/2014-04-23-Synopsys-New-ProtoCompiler-
Software-Speeds-Time-to-First-Prototype-by-Up-to-3X  
58 “Cadence Strengthens Leadership in FPGA Design-In Solutions with 
Acquisition of Taray”, Cadence Design Systems press release, March 22, 
2010, 
http://www.cadence.com/cadence/newsroom/features/pages/feature.a
spx?xml=taray  
59 “ASIC Prototyping Simplified”, Cadence Design Systems white paper, 
April 2011, 
http://www.cadence.com/rl/Resources/technical_papers/asic_prototyp
ing_tp.pdf  
60 “Cadence Announces Breakthrough in System Development to Meet 
Demands of ‘App-driven’ Electronics”, Cadence Design Systems press 
release, May 3, 2011, 
http://www.cadence.com/cadence/newsroom/press_releases/pages/pr.
aspx?xml=050311_sys_dev  
61 “Cadence Announces Protium Rapid Prototyping Platform and 
Expands System Development Suite Low-Power Verification”, Cadence 
Design Systems press release, July 17, 2014, 
http://www.cadence.com/cadence/newsroom/press_releases/Pages/pr.
aspx?xml=071714_Protium  

http://www.sec.gov/Archives/edgar/data/1027362/000119312507129831/dex991.htm
http://www.sec.gov/Archives/edgar/data/1027362/000119312507129831/dex991.htm
http://news.synopsys.com/index.php?item=122910
http://news.synopsys.com/index.php?s=20295&item=123150
http://news.synopsys.com/index.php?s=20295&item=123433
http://news.synopsys.com/2013-12-16-Synopsys-Extends-HAPS-70-Prototyping-Family-with-New-Solution-Optimized-for-IP-and-Subsystems
http://news.synopsys.com/2013-12-16-Synopsys-Extends-HAPS-70-Prototyping-Family-with-New-Solution-Optimized-for-IP-and-Subsystems
http://news.synopsys.com/2013-12-16-Synopsys-Extends-HAPS-70-Prototyping-Family-with-New-Solution-Optimized-for-IP-and-Subsystems
http://news.synopsys.com/2014-04-23-Synopsys-New-ProtoCompiler-Software-Speeds-Time-to-First-Prototype-by-Up-to-3X
http://news.synopsys.com/2014-04-23-Synopsys-New-ProtoCompiler-Software-Speeds-Time-to-First-Prototype-by-Up-to-3X
http://www.cadence.com/cadence/newsroom/features/pages/feature.aspx?xml=taray
http://www.cadence.com/cadence/newsroom/features/pages/feature.aspx?xml=taray
http://www.cadence.com/rl/Resources/technical_papers/asic_prototyping_tp.pdf
http://www.cadence.com/rl/Resources/technical_papers/asic_prototyping_tp.pdf
http://www.cadence.com/cadence/newsroom/press_releases/pages/pr.aspx?xml=050311_sys_dev
http://www.cadence.com/cadence/newsroom/press_releases/pages/pr.aspx?xml=050311_sys_dev
http://www.cadence.com/cadence/newsroom/press_releases/Pages/pr.aspx?xml=071714_Protium
http://www.cadence.com/cadence/newsroom/press_releases/Pages/pr.aspx?xml=071714_Protium


PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design 

45 
 

Chapter 4: Strategies for Today and Tomorrow 

SoC design has gone from relatively simple parts with a handful of IP 
blocks to massive designs with around 150 IP blocks. Reuse is becoming 
more important than ever, and integration is still where many designs 
meet with challenges. With schedules under pressure and verification 
and validation needs urgent, design teams are bringing a combination 
of EDA tools to work. 

As the cost of an SoC has escalated, the need for pre-silicon exploration 
has increased. Tradeoffs in performance and power consumption are 
part of nearly every design, especially mobile devices where recharging 
factors heavily into user experience. Expanding software content must 
be co-verified, with testing beginning long before production silicon is 
available. Complex workloads present an opportunity for optimization 
at the system level, if understood. 

The State of FPGA-Based Prototyping 
More and more teams are deploying FPGA-based prototyping tools 
today. The technology has adapted as FPGAs themselves and system-
level hardware and software have improved, and use cases within the 
SoC design flow have clarified. 

Changes in the FPGA itself have been dramatic. Foundries quickly 
discovered the uniform structures of FPGAs were ideal to prove out 
new process nodes. For example, first-generation Xilinx UltraScale 
FPGA parts use 20nm technology to pack something around 20 billion 
transistors in a part. This has driven single FPGA equivalent gate 
counts into tens of millions, and I/O pins well into the thousands. I/O 
speed has also improved with advanced SERDES transceivers and 
better memory interfaces. Clocking and power domains present far 
more flexibility, allowing FPGAs to more accurately mimic ASIC-like 
constructs. 

Diverse I/O interfaces and greater numbers of I/O pins motivate FPGA-
based prototyping board designers. High-speed connectors provide 
flexibility with signal integrity. Common physical interfaces are now 
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available on standardized daughter cards, and custom interfaces can be 
designed and added rapidly using the same daughter card strategy – 
either by the FPGA-based prototyping system vendor, or by the 
customer. Debug interfaces have also improved, as have high speed 
host interconnect ports for downloading and managing code. 

Image 4-1: Xilinx UltraScale process improvements 

 

FPGA-related software tools are also advancing. Logic synthesis tools 
efficiently translate high-level design into FPGA primitives, and 
understand nuances such as clock domain crossings and block RAM 
resources. Partitioning tools now not only divvy up larger designs 
across multiple FPGAs, they understand how the FPGA interconnect 
works on the FPGA-based prototyping board and optimize accordingly, 
reducing the need for manual partitioning. Debug tools provide 
visibility without intrusiveness. Co-simulation tools allow use of 
familiar simulation environments accelerated by execution in the FPGA 
hardware. 

Researchers are still considering the problem of multi-FPGA 
interconnect, as I/O pins continue to be a limiting factor and 
partitioning is challenging as inter-FPGA delays are still present. A new 
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thesis looks at the various approaches and considers a new congestion-
aware routing algorithm exploiting multi-point tracks and if flexible 
cabling distribution eases the solution. The author confirms that given 
automated flows, even complex multi-FPGA partitioning can be 
reduced to a matter of several hours instead of days or weeks – a huge 
productivity gain. It remains to be seen if the multi-point track 
approach, essentially using an interim FPGA hop between two other 
FPGA destinations, becomes a new best practice in automated 
synthesis. 62 

Image 4-2: Example of multi-point tracks in FPGA routing,  
courtesy Qingshan Tang, Pierre and Marie Curie University (UPMC) 

 

The biggest changes may be in the design workflow. Design teams are 
often geographically distributed, and access to a lab-based system is 
impractical. Teams are also working together; a software developer may 
use a small FPGA-based prototyping system to exercise an IP block, 
then pass those results on to another team working on the fully 
integrated design on a larger FPGA-based prototype. Enterprise-class 
solutions are emerging, leveraging network connectivity and cloud 
resources to connect and manage multiple FPGA-based platforms. This 
reduces handoffs, improves scalability and reuse, and opens up access 
across the globe 24/7 in a flexible, yet secure environment. 

With benefits of FPGA-based prototyping rising, adoption is steadily 
improving. The most recent 2014 data from Wilson Research Group 
places 32% of small projects up to 5M gates, 45% of medium projects 
up to 80M gates, and 28% of projects over 80M gates using FPGA-
based prototyping. In the small category, adoption outpaces hardware 
emulation by nearly double, and in the medium category the two 
approaches are nearly equal in use. In the large category, FPGA-based 
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prototyping adoption is accelerating as capacities increase and ease of 
use improves, particularly where distributed teams and smaller IP 
blocks tested and then rolled up for integration are involved. 63 

Developing for ARM Architecture 
Since ARM introduced its Cortex strategy, with A cores for application 
processors, R cores for real-time processors, and M cores for 
microcontrollers, designers have been able to choose 
price/performance points – and migrate software between them. How 
do designers, who are often doing co-validation of SoC designs with 
production software, prototype with these cores? 

Some teams elect to use ARM’s hard macro IP offering, with optimized 
implementations of cores. ARM has a mixed prototyping solution with 
their CoreTile Express and LogicTile Express products. CoreTile 
Express versions are available for the Cortex-A5, Cortex-A7, Cortex-A9, 
and Cortex-A15 MPCore processors, based on a dedicated chip with the 
hardened core and test features. The LogicTile Express comes in 
versions with a single Xilinx Vertex-5, dual Virtex-6, or single Virtex-7 
FPGAs, allowing loose coupling of peripheral IP. 64 

Others try to attack the challenge entirely in software. Cycle-accurate 
and instruction-accurate models of ARM IP exist, which can be run in a 
simulator testbench along with other IP. With growing designs come 
growing simulation complexity, and with complexity comes drastic 
increases in execution time or required compute resources. Simulation 
supports test vectors well, but is not very good at supporting 
production software testing – a large operating system can take 
practically forever to boot in a simulated environment. 

Full-scale hardware emulation has the advantage of accommodating 
very large designs, but at substantial cost. ARM has increased its large 
design prototyping efforts with the Juno SoC for ARMv8-A, betting on 
enabling designers with a production software-ready environment with 
a relatively inexpensive development board. 

 

 



PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design 

49 
 

Image 4-3: ARM Juno SoC Development Platform 

 

However, as we have seen SoC design is rarely about just the processor 
core; other IP must be integrated and verified. Without a complete pass 
at the full chip design with the actual software, too much is left to 
chance in committing to silicon. While useful, these other platforms do 
not provide a cost-effective end-to-end solution for development and 
debug with distributed teams. Exploration capability in a prototyping 
environment is also extremely valuable, changing out design elements 
in a search for better performance, power consumption, third-party IP 
evaluation, or other tradeoffs. 

The traditional knock on FPGA-based prototyping has been a lack of 
capacity and the hazards of partitioning, which introduces uncertainty 
and potential faults. With bigger FPGAs and synthesizable RTL 
versions of ARM core IP, many of the ARM core offerings now fit in a 
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single FPGA without partitioning. Larger members of the ARM Cortex-
A core family have been successfully partitioned across several large 
FPGAs without extensive effort and adverse timing effects, running at 
speeds significantly higher than simulation but without the cost of full-
scale hardware emulation. 

A hybrid solution has emerged in programmable SoCs, typified by the 
Xilinx Zynq family. The Zynq UltraScale+ MPSoC has a quad-core ARM 
Cortex-A53 with a dual-core ARM Cortex-R5 and an ARM Mali-400MP 
GPU, plus a large complement of programmable logic and a full suite of 
I/O. If that is a similar configuration to the payload of the SoC under 
design, it may be extremely useful to jumpstart efforts and add 
peripheral IP as needed. If not, mimicking the target SoC design may 
be difficult. 65 

True FPGA-based prototyping platforms offer a combination of 
flexibility, allowing any ARM core plus peripheral IP payload, and 
debug capability. Advanced FPGA synthesis tools provide platform-
aware partitioning, automating much of the process, and are able to 
deal with RTL and packaged IP such as encrypted blocks. Debug 
features such as deep trace and multi-FPGA visibility and correlation 
speed the process of finding issues. 

The latest FPGA-based prototyping technology adds co-simulation, 
using a chip-level interconnect such as AXI to download and control 
joint operations between a host-based simulator and the hardware-
based logic execution. This considerably increases the speed of a 
traditional simulation and allows use of a variety of host-based 
verification tools. Using co-simulation allows faster turnaround and 
more extensive exploration of designs, with greater certainty in the 
implementation running in hardware. 

Integration rollup is also an advantage of scalable FPGA-based 
prototyping systems. Smaller units can reside on the desk of a software 
engineer or IP block designer, allowing dedicated and thorough 
investigation. Larger units can support integration of multiple blocks or 
the entire SoC design. With the same synthesis, debug, and 
visualization tools, artifacts are reused from the lower level designs, 
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speeding testing of the integrated solution and shortening the time-to-
success. 

Another consideration in ARM design is not all cores are stock. In 
many cases, hardware IP is designed using an architectural license, 
customized to fit specific needs. In these cases, FPGA-based 
prototyping is ideal to quickly experiment and modify designs, which 
may undergo many iterations. Turnaround time becomes very 
important and is a large productivity advantage for FPGA-based 
prototyping. 

Adoption Among Major System Houses 
Perhaps the most striking examples of the usefulness of FPGA-based 
prototyping strategies are its use in flagship mobile and networking 
SoC designs. These sophisticated design teams are pursuing massive 
designs with a phalanx of EDA tools, customizing design flow to meet 
specific needs. 

Image 4-4: Apple A9 chip, courtesy AnandTech and iFixit 

 

At Apple, where ARM-based SoC designs have been in progress even 
before they signed an architectural license in 2008, highly optimized 
chips are co-verified with iOS producing stunning designs for the 
iPhone and iPad families. FPGA-based prototyping systems are used in 
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conjunction with many technologies, some purchased commercially 
and some created in-house. A team of 30 engineers routinely use these 
systems, performing hardware and software exploration and 
integration test. 

Samsung is a bit unique in that its distributed SoC teams work on 
designs handed off to Samsung foundry facilities and used in Samsung 
consumer electronics. When vertically integrated, passing along 
verification artifacts can be extremely beneficial. They are a big user of 
commercial FPGA-based prototyping platforms, including locally-
designed FPGA boards from Korean vendors. Again, the design flow is 
highly customized, leveraging the flexibility of FPGA-based prototyping 
platforms for rapid turnaround and support of many configurations. 

Huawei is another example of vertical integration, with even more self-
designed FPGA platforms created for their networking infrastructure 
operations. As Huawei has entered the merchant SoC business with 
their HiSilicon brand, they have come under similar time-to-success 
pressure as other merchant vendors. They are adding commercial 
FPGA-prototyping systems in order to leverage more development 
tools rather than designing them all internally. 

Application Segments in Need 
High volume SoC applications in mobile devices and consumer 
electronics have been a proving ground for FPGA-based prototyping 
strategies. As PC and mobile markets mature, where is the frontier for 
SoC design? What new requirements make a strong case for use of 
FPGA-based prototyping? 

Software content is growing at a rapid rate, now exceeding hardware 
effort in most projects. Co-verification is on the rise, where pre-silicon 
efforts explore production software long before committing a chip to 
production. Safety-critical needs are also rising, where both hardware 
and software must be validated to stringent requirements. These 
characteristics point toward three application segments, all on the rise. 

Automotive electronics are undergoing a renaissance, after a period 
where many vendors avoided the harsh environmental requirements. 
Microcontroller content in cars has been increasing for decades, with 



PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design 

53 
 

more points of control and interconnects such as CAN. Infotainment 
presented an opportunity for in-dash multimedia elements, very similar 
to those found in mobile SoCs. 

Now, connectivity and intelligence are taking automotive electronics to 
the next level. Advanced driver assistance systems (ADAS) are on a 
rapid rise. Some estimates place as many as eight to ten cameras in 
each vehicle soon, with sophisticated embedded vision processing. 
Research in completely self-driving cars is also on the rise. New 
developments combine faster processing, improved interconnect such 
as one wire Ethernet, and cloud connectivity. 

Modeling a car with its electromechanical systems is complex. 
Accuracy and speed is paramount, and use of production software is 
mandatory in achieving ISO 26262 requirements. Part of the 
compliance testing calls for fault injection to analyze potential failure 
modes – relatively easy with FPGA-based prototyping platforms and co-
simulation, far more difficult around actual silicon. 

Distributed development teams are also the norm in automotive. 
FPGA-based prototyping systems are often the only solution, providing 
virtual hardware for many developers at several locations instead of 
expensive production hardware. Using cloud technology, FPGA-based 
systems can be interconnected and accessed remotely, avoiding 
unnecessary duplication of platforms. 

Another area getting a lot of attention is wearable technology. These 
devices fall into several broad categories: fitness bands, smartwatches, 
activity and health monitoring, fashion, vision-enhanced productivity, 
and more. Compute power and sensors vary, as does connectivity. 
Some devices are intended to be tethered to a smartphone, while 
others have their own 3G or 4G modem. 

Two common requirements exist across wearables: small size and 
weight, and very low power consumption. In the Apple Watch, many 
chips were packed into the S1 system-in-package (SiP), creating a 
highly optimized form factor. Consumer adoption is showing 
preference for wearable devices that operate for a week, not requiring 
recharging at the end of every day of use. 
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Using FPGA-based prototyping for wearables brings many benefits. In 
the area of small size and weight, exploration into packaging options 
can be performed, moving IP blocks and swapping pins until an 
optimum system-level solution is obtained. Tradeoffs between 
performance and power consumption can also be done, with 
visualization allowing designers to see what is going on with fine 
granularity and make changes in the design where necessary. 

Finally, there is the Internet of Things, or IoT – not a single application 
segment, but more of a collection of interconnected technologies into a 
bigger idea. While not declared explicitly as safety-critical, many IoT 
applications provide important control functions and collect and 
process critical data that individuals and businesses are coming to rely 
on. IoT devices have to work correctly, all the time, and must be secure; 
in a word, these devices must be trusted. 

Creating that trust is challenging. IoT design falls into three tiers: edge, 
gateway, and infrastructure. Edge devices interface with sensors and 
actuators, taking readings and interfacing with the physical world, and 
most often connect wirelessly to a gateway. Incoming data is 
aggregated and analyzed in gateways, then passed to an infrastructure 
(often referred to as “the cloud”, but implementation can vary with use 
cases) for further processing, storage, and presentation. Any weak link 
in performance, power consumption, wireless signal integrity, security, 
or other issues can cause a system-wide problem. 

IoT applications will test the mettle of design teams. Rushing hardware 
and software to market in order to declare “first” versus competition 
may be counterproductive when flaws are uncovered. Business 
customers in particular are proceeding very cautiously, asking for pilot 
installations on a small scale before rolling out full-scale deployments. 
SoC designers will need to customize, explore, test, and perhaps adapt 
rapidly but carefully. 

FPGA-based prototyping will prove crucial for IoT designs. Many of 
these design starts, particularly for edge devices, will be small in terms 
of gate counts, but may seem larger in terms of verification testing 
needs. Expertise in wireless technology, security, power management, 
and other disciplines will become a differentiator for SoC teams. 
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Running more tests on a wider variety of IP blocks within limited 
schedules calls for cost effective, flexible platforms that can handle any 
configuration. 

Many IoT-related specifications exist, and it is very possible designs 
may be forced to respond mid-stream as new ones appear and others 
fall away. Algorithms will also adapt as researchers provide new 
breakthroughs. With the right FPGA-based prototyping tools, hardware 
and software can be explored thoroughly against real-world use cases, 
which will be better understood as more IoT deployments occur. 

The overall theme in these applications is system-aware SoC designs 
win. Rather than just implementing a set of functional requirements, 
the new era of smart SoC design anticipates use cases and tests 
hardware and software accordingly – pre-silicon. 

Next, the “Implementing an FPGA Prototyping Methodology” Field 
Guide authored by the teams at S2C looks at FPGA-based prototyping 
from a practical viewpoint with tips on how to choose a platform, 
addressing scalability, and implementing a design flow. 
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When Do You Need an FPGA-based Prototyping Solution? 
We all know that complexities in design and shrinking time-to-market 
windows are driving up design and verification costs.  More and more, 
engineers are turning to hardware platforms for their quest to verify 
their designs on time.  Hardware platforms such as FPGA prototyping 
are growing in popularity due to their relative low expense and ability 
to test system designs at speed versus simulation which is too slow and 
often can’t provide an accurate assessment of design behavior. FPGA 
prototyping has often been typecast as a solution used solely for small 
designs late in the verification process just before the software 
development stage, with concerns that the difficulties of employing 
prototyping across multiple FPGAs have outweighed the cost and speed 
benefits of implementation for large designs. Emulation has been the 
choice for verifying large designs because of its capacity, but it too has 
limitations.  

The truth is that today’s FPGA-based prototyping advancements are 
breaking that restrictive notion. Innovative hardware and the addition 
of cutting-edge software have made it possible to realize the benefits of 
FPGA prototyping not only for system validation and software 
development, but also much earlier and throughout the design and 
verification flow as well as for extremely large designs. 

FPGA-based prototyping is well suited for even the largest designs. 
FPGA capacity has increased exponentially to reach up to 44M ASIC 
gates (per FPGA) and can fit up to a billion gates (by using an array of 
FPGAs in a single system). These increases in capacity have not affected 
FPGA prototyping speed and costs relative to emulation; it’s still much 
faster and cheaper than emulation. 

To figure out if FPGA-based prototyping is the optimal choice for your 
design and verification flow, you should ask yourself these questions. 

1) Is testing of my design in real-time critical to design 
success?   

To answer this question, you should analyze the importance 
and complexities of your design’s functionality.  As mentioned 
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earlier, simulation can only get you so far when dealing with 
complex device behavior. Deep and accurate assessment can’t 
be achieved simply through simulation no matter how many 
regressions are done. Confidence in a design can often times 
only be achieved through the ability to test it in real-time 
scenarios especially for designs heavily dependent on timing 
accuracy. 

Many applications need to be tested in real time or close to real 
time to assess the quality of the design.  Examples of this are 
Video and Audio applications. In addition, some designs 
require real-world testing involving outside environments, 
noise, or interfacing with 3rd party designs and infrastructures. 

2) How many tests will you need to run and what is the 
time window that needs to be achieved between testing 
and implementation? 

As your design stabilizes and matures, validating the software 
components come into play. At this stage, emulation and 
prototyping have distinct advantages. If you need to get your 
model up and running quickly with only the need to run a few 
tests, then emulation is ripe for your application. Emulation 
may only need a few hours to set up and get going, while an 
FPGA prototype can take weeks. However, if the number of 
tests you need to perform are more significant and you need 
faster performance for software development and compatibility 
testing, then FPGA prototyping might serve your needs better. 
Although it may take much longer to set up, FPGA prototyping 
is unarguably much faster than emulation. Typical emulation 
speeds run at about 500 KHz where prototyping can easily run 
between 10 and 50 MHz with some reaching as much as 
100MHz. 

Given these speed differences, the point of performance/testing 
crossover between these two solutions is strikingly short (even 
with FPGA prototyping’s long set up time) and the performance 
gap grows dramatically thereafter. The difference in 
performance is particularly steep when prototype replicates 
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(copies) are used in parallel. The cost advantage that FPGA-
based prototypes enjoy – typically 5 to 1 – allows multiple 
platforms to be deployed, thereby accelerating overall 
performance. Therefore, you can complete exponentially more 
tests in a shorter amount of time when using FPGA prototyping. 

You can read more about the performance cross over 
comparison in the EE Times article “Emulation vs. Prototyping -
- The Performance Curve Crossover.” 

3) What is your budget? 

A simplistic view is that emulation is expensive when compared 
to FPGA prototyping.  However, a deeper analysis of this idea is 
merited.  Most companies can afford to implement a few 
emulators for early design verification, but when implementing 
for a large number of replicates for software development and 
compatibility testing, the costs of emulation soar.  As 
mentioned in the answer to question 2, the cost advantage of 
FPGA prototyping is 5 to 1 compared to emulation for even 
faster and more cost effective performance. 

There's no arguing against the tried-and-true methodology of 
emulation. The inherent strengths of emulators are well-suited 
to system integration efforts and rigorous verification testing. In 
fact, the direct results of performing emulation are designs that 
stabilize and mature more quickly. This in turn precipitates a 
shift from verifying hardware elements to validating software 
components. 

When this change in focus occurs, FPGA-based prototypes 
become the natural platform to pick up the pace of validation 
and further drive software development. Performance crossover 
analysis serves as an aid in determining when to make that 
shift, and why. Ultimately, this is a powerful demonstration of 
how emulation and FPGA-based prototypes are complementary 
tools – not despite a performance crossover, but because of it. 

http://www.eetimes.com/author.asp?section_id=36&doc_id=1328736
http://www.eetimes.com/author.asp?section_id=36&doc_id=1328736


PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design 

64 
 

How Do I Choose Which Solution to Implement? 
Now that you understand when and why you need FPGA prototyping, 
you need to know the various FPGA prototyping solutions that you can 
employ to maximize your investment. To set up your analysis for the 
various FPGA prototyping options, you have to consider your design 
size and application, design stage, and resource management 
requirements. You’ll also need to take a look at your FPGA prototyping 
specifications and then various options in terms of off-the-shelf or 
building your own. 

Design Specifications 

For the size of your design, think in terms of capacity.  Without enough 
gate-level capacity to accommodate your design, you can’t build a 
prototype. Most systems need adequate memory too, so having 
sufficient memory available is critical. 

You also need to think about the type of application you are building. Is 
it IoT, Automotive, Super Computing, Data Storage, Cloud Computing, 
Image Processing, a Communication Network, or is it something else? 
Is it a design that contains a large number of DSPs or does it require a 
lot of logic resources or memory resources? Is it based on a specific 
protocol like PCIe or a particular bus standard like AXI? There are 
many different types of prototyping hardware and software solutions 
that cater to these different application types. Some hardware boards 
are flexible enough to scale with your design and allow you to adapt to 
different design types through extensions and daughter cards while 
others do not. 

The design stage refers to when within your design methodology flow 
you’ll implement FPGA prototyping. We talked earlier about the FPGA 
prototyping sweet spot being used during software testing and 
validation and that it is well suited for designs that are fully rendered in 
RTL that can be mapped to an FPGA.  However, recent advances in 
FPGA prototyping technology have extended its value into other areas. 
For example, many designs may not be completely mapped to an FPGA 
and may be only partially available as behavioral models in descriptions 
such as C++ or SystemC. 
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In these cases, transaction-level interfaces play a critical role in being 
able to bridge the abstraction level between behavioral models and live 
hardware. Transactors offer a way to communicate between software 
running on a host and an FPGA-based prototyping platform that often 
includes memories, processors, and high-speed interfaces. These 
transactors can be implemented over a well-known bus protocol such 
as AXI or an industry-standard transaction protocol such as SCE-MI. 
Transactors extend the functionality of the system allowing it to be 
used for algorithm/architectural exploration, system integration with 
virtual prototypes, and exhaustive testing through software generated 
corner tests. 

An often-overlooked aspect of design and verification is the 
management of hardware, software and personnel resources to 
maximize efficiency. This not only includes the assignment of tools to 
key engineers throughout the flow but also includes the behavioral 
reporting of these assets. In today’s connected world, companies now 
have the luxury of taking advantage of engineering talent across the 
globe. Because of this, many design teams are geographically dispersed. 

Access to FPGA prototyping systems have typically been constrained by 
the use of localized systems that require local management and 
control. This limited access has presented a significant hindrance to 
modern SoC design teams – especially software development teams – 
which again are often globally distributed. There are advances in FPGA 
technology to alleviate these circumstances to allow for wide 
distribution of hardware and management software resources through 
the cloud. If you are working with a globally dispersed team, this will 
be a factor in choosing the right FPGA prototyping platform for you 
and your team. 

FPGA Prototyping Specifications 

There are a number of FPGA prototyping solutions on the market. The 
above analysis will impact your decision on which one you choose. 
First, let’s take a look at how your design size factors into the specific 
FPGA prototyping solutions.  Individual FPGA capacity has increased 
significantly over the years reducing the number of FPGA devices 
needed. The vast array of FPGA options on the market span a wide 
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range of capacities to fit your design size requirements. The larger your 
design, the most likely you’ll need an FPGA or FPGAs with the capacity 
to follow suit. Today’s FPGAs can handle designs of up to 44 million 
gates.  Even with these high-capacity FPGAs you must keep in mind 
that the usable capacity of an FPGA is roughly 50-70% when 
incorporated into an FPGA prototyping environment regardless of the 
FPGA prototyping solution that is chosen. Given this fact and that most 
designs scale beyond the limits of a single FPGA, a multiple FPGA 
prototyping solution is the norm. 

Choosing an FPGA prototyping solution that can scale with your 
design’s needs is preferred. To get the most from your prototyping 
solution, you must consider how easily the prototyping environment 
can scale. Does the architecture of the prototyping solution accept 
additional hardware be it more prototyping boards or specific daughter 
cards geared for a particular design type or design characteristic? 
Moreover, does the prototyping solution have the necessary integrated 
components to scale with your design? Some designs are so large that 
only a handful of FPGA prototyping solutions have the scalable 
architecture to keep pace. For example, S2C’s Cloud Cube (a chassis) 
can connect up to 32 FPGAs to reach design capacities of up to 1 billion 
gates. However, capacity can scale even further when multiple Cloud 
Cubes are employed. 

Multi-FPGA prototyping platforms do have significant issues when it 
comes to I/O count and performance. Not only is mapping large multi-
million gate designs to multiple FPGAs a challenging task, but 
performance may suffer because of timing delays between the FPGAs. 
Therefore, it becomes apparent that choosing a platform with the 
ability to handle complex partitioning is essential to reduce 
repartitioning and maintain proper real-time performance. 

Multi-FPGA platforms also come with the added difficulty of 
debugging. It used to be that signals internal to an FPGA could not be 
probed unless they were brought out through the I/O. Fortunately, 
major FPGA vendors have internal logic analyzers to address the 
visibility issue. However, many of these internal logic analyzers have 
several limitations, including support for only single FPGA debug, 
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limited memory size using FPGA internal memory, and long place-and-
route times to change probes. Debugging a design partitioned across 
multiple FPGAs is all but impossible without a tool that helps set up 
probes and makes signals easy to track based on their RTL-level names. 
Debugging should use FPGA I/O efficiently and maintain a useful 
debug trace. 

Of equal importance is the ability to reuse a prototype (or even part of 
one) to save development time and lower implementation risk for 
future projects. But this is difficult to achieve with a board built for a 
specific project. As SoC designs grow in size, they may no longer fit in 
older FPGAs. If the interface to an external system is built directly on 
the prototyping board, it can’t be reused for projects in which the 
interface is different. The ability to reuse your prototype platform 
enhances its usefulness, speeds the process of developing new 
prototypes, and reduces overall costs. 

Given the points made above, there are three options for the type of 
FPGA prototyping platform you can implement.  All of these options 
utilize FPGAs from such vendors as Xilinx and Altera.  Specifications 
for each of these vendors’ latest FPGAs are shown below. 

Image FG-1: Comparison of latest FPGAs from Xilinx and Altera 

 

The first option is a full custom board often referred to as a build-your-
own platform. The connections for custom platforms for both inter-
FPGA and the external interfaces are very specific to a particular 
design, which is their advantage. The nature of these platforms lends 
itself well to increased performance and maximized use of external 
interfaces. Creating a custom platform is an extremely time-consuming 
endeavor resulting in an eventual reduction in productivity. The 
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expertise necessary to create and implement such a solution can be 
daunting and not necessarily in the “wheel house” of most prototyping 
teams. Beyond this limitation, there is the fact that most custom 
platforms cannot be reused for other projects due to the specificity of 
project(s) they were designed for. When you factor in the time, energy, 
and risks associated with unproven build-your-own boards the expense 
get be quite high. 

A second option is the off-the-shelf platform that is comprised of a pre-
built prototyping board with fixed connections for communication 
between each FPGA as well as the external interfaces. This type of 
board is often referred to as an application-specific FPGA board. These 
can be comprised of a single FPGA or multiple FPGAs. Examples 
include Xilinx and Altera evaluation boards and many PCIe-based 
FPGA boards. The advantages of using an off-the-shelf solution are 
reliability and faster time-to-market. These solutions have been 
thoroughly tested to avoid bring-up errors when deployed in the field. 
The real differences between the various off-the-shelf solutions depend 
on the following: 

• The type of FPGA that is used, 
• How many FPGAs are used, 
• What external interfaces are on the board, 
• What expansion capabilities are there for the board, 
• Does the board come as a reference design? 

These systems typically lack support for partitioning and debug. 
Scalability is usually not an option, often resulting in having to toss out 
the system when the design expands or external interfaces change.  

The third option is a scalable or modular approach where cabling and 
connectors are used to connect multiple off-the-shelf FPGA boards. 
The connections for both inter-FPGA and external interfaces are user-
defined. The benefit of this solution is that performance may be 
enhanced by the varying distribution of the interfaces and cables. This 
approach also fits most design needs in terms of capacity and external 
interfaces. These are reusable platforms, scalable and flexible as designs 
grow and design specifications change. When it comes to partitioning 
across multiple FPGAs (covered in depth later), the interconnections 
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can be adjusted through cables and/or interconnection modules for 
higher performance. The flexibility with this approach is inherent, but 
along with it comes an enormous amount of cables to manage scaling 
beyond 4 FPGAs. There needs to be a balance between utilizing on-
board interconnections versus cables. Should you use Single, Dual, or 
Quad FPGA modules as a basis to scale? 

Building a Scalable Prototyping Platform 
If you’ve determined that you need a scalable FPGA prototyping 
solution, then this next section will guide you through the process of 
creating a scalable platform.  

Whether you need scalability for your current design as you move 
through the design and verification process or whether you need your 
FPGA platform to be reusable and able to scale for future designs that 
may be larger than your current one, it all starts with identifying and 
selecting the ideal building blocks. The foundational prototyping board 
you choose must have flexibility to expand so a custom platform is 
usually out of the question as a custom board requires even greater 
customization to grow. When crafting your platform, there are three 
initial FPGA building blocks to evaluate: Single FPGA boards, Dual 
FPGA boards, and Quad FPGA boards. 

Selecting either a single, dual, or quad board depends on your design’s 
size, memory requirements, and the number of inter-FPGA 
connections and external I/Os that will best fit your needs. The chart 
below provides an example of the differences in these board types 
based on S2C’s solutions for its Xilinx Virtex UltraScale Logic Modules. 

These comparisons don’t tell the whole story though. You must take a 
closer look at the architecture for each of these solutions.  Besides the 
number of physical interconnections between FPGAs, the type (DDR3 
or DDR4) and capacity (4GB, 8GB, or more) of on-board memory is 
equally important to your design. Of additional interest should be the 
number of high-speed gigabit transceivers and their performance level. 
The following diagrams provide in-depth comparisons of each of the 
architectures for single, dual, and quad FPGA prototyping boards. 
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Image FG-2: single FPGA module architecture 

 

 

 

Image FG-3: dual FPGA module architecture 
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Image FG-4: quad FPGA module architecture 

 

The type of I/O connectors used in the FPGA module may have a big 
impact on your design mapping and performance. First, they must be 
optimized for FPGA I/O banks, and even the FPGA die, in case some 
FPGAs have multiple internal die. In addition, having I/Os from 
different die will decrease performance. All traces from the FPGA to the 
same I/O connector should have the same trace length to increase bus 
performance. Connector performance itself may also play an important 
role especially if the connectors are optimized for running high 
performance LVDS (low voltage differential signaling), especially at 
rates over 1 GHz. 

It's All About Flexibility 

The foundational prototyping board is the first step in building 
scalability. Each solution whether a single, dual, or quad system must 
allow you to grow, you must be able to have the flexibility to grow your 
single system into a dual, quad or beyond.  Likewise, your dual system 
should allow you to stitch together other systems of the same FPGA 
type and architecture to create a quad system. 
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Even with this flexibility, there are some implications to the number of 
interconnects and I/Os when stitching together these systems. Careful 
consideration must be given to which system you initially choose. You 
will notice in the following diagrams that building these multi-FPGA 
systems require the ability for the boards to be connected via cables or 
interconnection modules.  These systems will also need some sort of 
external module to manage global clocking and reset mechanisms. 

Image FG-5: Connection of two single FPGA prototyping modules 

 

Image FG-6: Connection of 4 single FPGA prototyping modules 
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Going Beyond 4 FPGAs 

What happens if your design needs require going beyond the use of 
either 4 single FPGAs, 2 dual FPGAs, or a quad FPGA system?  This 
increase in complexity triggers a whole new set of scalability questions.  
These questions can be broken down into several categories. 

Space – How big of a desk or lab area do you need to work with a large 
number of FPGAs? Although you can continue to stitch together 
multiple prototyping boards to expand beyond a quad system, your 
physical lab space may be limited making the connections of these 
boards much more complicated. Not only will you be dealing with 
space issues, but also the cabling of these systems will become very 
unwieldy. 

Scalability & Flexibility– What if you require more logic and memory 
capacity or the system interfaces or memory types change? Can you 
configure the large number of FPGA resources for multiple designs? 
Because of the investment into large multiple board systems, these 
reusability type questions become important. It is much easier to invest 
in single board systems if the expectation is that the board will have 
limited use beyond the initial design. However, when the initial design 
requires the use of a larger prototyping system, your investment must 
consider possible changes in the prototyping environments and future 
project uses. 

Global System Control – How do you provide low-skew clocks and 
resets to a large number of FPGAs that you are using for the same 
design? Is there a way to easily download to FPGAs remotely and how 
fast is it? Lower-end software can provide some sort of support for 
these questions but may miss some basic requirements. Furthermore, 
the larger the overall hardware system, the more difficult it is to control 
such things as clocks and resets. Downloading for larger systems can be 
a cabling nightmare. Higher-end systems that offer complete runtime 
support and chassis with minimal cabling help reduce the pain 
dramatically. 

Power Supply – How do you provide power to a large number of 
FPGAs? Can each FPGA be individually controlled (On/Off/Recycle)? Is 
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there a power-monitoring feature that you can employ? Providing 
power individually to each board can impose even more physical lab 
space issues not to mention complicating the management of powering 
each board. 

Reliability – How do you verify that all your clocks and 
interconnections are correct? Is there an easy way to monitor the 
system as well as the individual FPGA statuses? Making sure a complex 
prototyping system as large as 32 FPGAs works correctly is extremely 
difficult without automation. If a design isn’t running correctly, a great 
deal of time can be wasted trying to manually determine if the error is 
due to the design itself or the FPGA system. Software that provides 
automated self-test capabilities as well as automated voltage, current, 
and temperature monitoring with shut down will provide much needed 
peace of mind. 

Image FG-7: S2C’s Cloud Cube supports any combination of FPGA boards, 
and up to 8 Quad boards can fit into the chassis. 

 

 

Working with a Chassis Architecture 

Many of the issues raised by the above questions can be alleviated 
through the use of a chassis for the FPGAs. Employing the use of the 
right chassis will allow any combination of boards (whether they be 
single, dual, or quad) to be easily housed to fit restrictive lab space 
requirements, connected to reduce cabling, and managed to improve 
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overall efficiency. As an example, we’ll use S2C’s Cloud Cube to outline 
how this type of architecture can be fully leveraged. 

A chassis system should easily support both single and multiple module 
clock & reset requirements including available global clock resources 
and types, internally generated clock, and clock skew. The diagrams 
below illustrate how this is done. 

Image FG-8: Single Module clock and reset 

 

 

Image FG-9: Multiple Module clock and reset 

 

 

Regardless of utilizing a chassis or not, the ability to control, monitor, 
and manage the FPGA modules is critical.  However, working within a 
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chassis system makes performing the following tasks much easier with 
some having built-in automation: 

• Monitoring the system status, 
• Powering the on/off/recycle of individual FPGA modules, 
• Controlling global clock & reset and board clock & reset, 
• Auto recognition and detection of installed FPGA modules, 

cable, and daughter cards, 
• Remote FPGA downloading, 
• Self-testing of cables, hardware, and FPGA modules, 
• Monitoring of the entire system in real-time. 

Let’s compare the differences in building a 32 FPGA system using a 2-
dimensional approach versus a 3-dimensional build using a chassis. 
We’ll start with creating a 4 by 8 MESH of the FPGAs.  A 2D setup 
requires a very large lab space with complex power supply to all 32 
individual FPGAs as well as a complex clock distribution. As you can 
see in the illustration below, using single FPGA modules requires 52 
interconnections. If each connection requires 3 banks and each cable 
transmits 1 bank, then the system needs 156 cables – a cumbersome 
amount of cables to manage. 

Image FG-10: A 2D setup to connect 32 FPGAs requires  
52 interconnections resulting in 156 cables 
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If you implement a 3D approach using Quad FPGA modules in a 
chassis the setup is much cleaner and requires far fewer cables to 
manage.  The illustration below shows the optimization that can be 
achieved. 

Image FG-11: A 3D setup to connect 32 FPGAs reduces interconnect 

 

In this logical view of a 4 by 8 MESH system mapping to 32 FPGAs on 8 
Quad FPGA modules, Bn is the Quad board number, Fn is the FPGA 
number on the Quad module, and Jn is the connector number on a 
Quad FPGA module. 

In order to minimize the cable connections and also cable lengths, we 
group the FPGAs in a specific pattern with some rotations from the 
logical view. This will also keep the cables from crossing from one side 
to the other. 
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Dotted lines signify the on-board interconnects. You’ll notice that 32 of 
the FPGA interconnection points are now using on-board traces and 20 
of them use cables. A closer look at the left and right sides of the 
chassis reveals how these cable connections would look. 

Image FG-12: Chassis cabling for 3D interconnect 

 

 

Overview of the FPGA Prototyping Methodology Flow 
So now that you’ve determined the best FPGA prototyping solution for 
your needs, let’s look at the flow for setting up a prototype. 

Setting Up a Prototype 

A typical implementation flow for a prototype with multiple FPGAs 
contains three general parts: Partitioning, Routing / Multiplexing, and 
Place and Route. 

After the design RTL is created and goes through the synthesis process, 
it is then ready for the partitioning stage. As mentioned earlier, many 
designs are larger than a single FPGA so the design must be 
compartmentalized or partitioned into several FPGAs. Partitioning is 
tricky as the design can’t simply be cut into equal parts based on the 
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number of FPGAs being used. The design needs to be disseminated not 
only according to capacity, but also according to how and what signals 
cross between the FPGAs. 

However, this is changing as FPGA capacity increases. Proper 
partitioning minimizes the interconnect counts among FPGAs and thus 
increases the overall system speed. Partitioning done the right way also 
keeps the critical design blocks together and allows you to manually 
lock certain blocks to specific FPGAs for external interfaces.  
Partitioning can be a daunting task but if done with the right tools it 
can be easy and efficient. We’ll cover techniques for conquering 
partitioning in the Compiling and Partitioning section of this guide. 

Once partitioning is deemed successful, the design moves on to the 
routing or pin multiplexing stage.  When a design goes through the 
partitioning stage, cut nets are created. Cut nets are the parts of signals 
that get crossed between each of the FPGAs. During the routing phase, 
these cut nets get allocated to an inter-FPGA track.  Because there are 
likely fewer available inter-FPGA tracks than cut nets, multiplexing of 
several of these cut nets into a single track must occur. Again, there are 
techniques that can be leveraged to make this process go as smoothly 
as possible and will be discussed later. There are still cases where no 
pin multiplexing is needed, and many designers prefer to create designs 
with this goal in order to run their designs at high speed even when 
partitioned across multiple FPGAs. 

Place and Route is the last step, where the bitstream of each FPGA is 
generated and downloaded into the platform to model the design. 

What About Debug? 

This typical FPGA prototyping flow puts less emphasis on debugging. 
There is a reason for this: debugging a single FPGA design is a relatively 
simple task. However, performing debug operations on a multi-FPGA 
platform is an extremely long and often labor intensive process.  

Manual techniques only allow for debugging one FPGA at a time, and 
traditional tools such as an external logic analyzer or FPGA internal 
logic analyzer have limitations when it comes to multi-FPGA debug. 
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With manual processes, only gaining insight into the behavior of one 
FPGA at a time may result in missed design errors or misleading design 
behavior as it becomes difficult to test the functionality of the design as 
a whole. The part of a design that resides on a particular FPGA may be 
bug-free in its compartmentalized form, but when operated within the 
totality of the design may contain critical errors. External logic 
analyzers have a limited number of probes and require designers to pull 
their probes to the top level so they come out from the FPGA I/O pins. 

Because of these issues, debug has been largely inadequate within the 
FPGA prototyping process thus leaving debug to be done only through 
simulation and/or emulation. But, hold on a minute. There have been 
significant advances in FPGA prototyping to deal with the very complex 
issue of multi-FPGA debug that augment the FPGA Prototyping Flow. 

Image FG-13: Multi-FPGA debug flow 

 

To make the debug of multiple FPGAs possible, probes must be set up 
in the RTL prior to synthesis so that they can be tested down the line. 
We’ll explore the debug flow part of this flow in more depth during the 
Debug section of this guide. 
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Details of Implementing the FPGA Prototyping Flow 
Now that you have a general grasp of the individual components of the 
FPGA prototyping flow let’s explore how to implement them in detail. 

Compiling and Partitioning the Design 

Designs utilizing only one FPGA don’t require partitioning and 
therefore designers can immediately enter place & route (P&R) using 
either Xilinx or Altera P&R tools. However, as we mentioned earlier, 
FPGA capacity has increased significantly but many of today’s designs 
are still too big to fit on a single FPGA. Partitioning is a required step 
and partitioning a design incorrectly can have dire consequences in the 
functionality of the design within the FPGA prototyping environment. 

The increased capacity of newer FPGAs has changed the approach to 
partitioning. Partitioning a design across multiple FPGAs has been 
known to be a very difficult and time-consuming process that primarily 
took place at the granular gate-level in order to meet the correct 
parameters to partition the design correctly. Doing so resulted in the 
creation of a huge number of interconnects between the FPGAs. 
Today’s high-capacity FPGAs, like Xilinx’s Virtex UltraScale and Altera’s 
Stratix 10, have allowed partitioning to come up a level and become 
more of a grouping exercise. 

Because most designs today are IP-based (with functional blocks such 
as CPU, GPU, and peripherals) the individual blocks are often smaller 
than a single FPGA and can therefore be grouped at the IP level rather 
than having to go through more fine-grained gate-level partitioning. As 
an example one of the biggest ARM processor cores today, the ARM 
Cortex-A57, can fit into one Xilinx Virtex UltraScale FPGA. Most IP 
blocks have a manageable number of I/Os and partitioning algorithms 
should be able to find the best grouping to minimize the number of 
interconnects among FPGAs. The result is a much easier and smoother 
partitioning experience. 

Partitioning can be done manually of course and still many designers 
are doing manual partition for smaller numbers of FPGAs. However, 
the work is tedious and error-prone and often results in long debug 
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cycles. Utilizing commercial partitioning tools can save both time and 
help improve the performance of your design. 

 

Image FG-14: Larger FPGAs mean reduced interconnect 

 

 

Partition speed is always important. Traditionally a gate-level partition 
engine can take extremely long hours to partition today’s large SoC 
designs. However, gate-level partitioning is no longer required today as 
mentioned earlier and therefore partition speed can significantly 
increase. In addition, by making some design hierarchies “black boxes” 
you can further increase partition performance and simplify the entire 
compile flow. 

With black-box partitioning, designers can choose which design 
hierarchy tree should be black-boxed and therefore any lower level 
trees of that hierarchy are hidden from partitioning. The result is an 
increase in partitioning performance.  The lower level hierarchy trees 
are not completely forgotten but simply merged at the FPGA P&R step 
of the flow. 
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Image FG-15: Black-box partitioning 

 

No matter how good the automatic partitioning algorithm is, it can 
always be better with some guidance from designers. Therefore, the 
following type of grouping constraints should be set by designers to 
guide the automatic partitioning engine. 

• Normal Group – These are IP or design blocks that you 
know should be located in the same FPGA for increased 
performance or to minimize the interconnection nets. 

• Slot Group – These are specific IP or blocks that should 
reside in a specific FPGA.  Often there are specific external 
interfaces that are only available in one of the FPGAs on the 
board and you can use this feature to lock the block to the 
correct FPGA. 

• Exclusive Group – Some portion of the designs might be 
fixed and you do not want to touch or re place and route 
again. Exclusive group means only the selected IP/blocks 
will be allowed in a specific FPGA. 

• Global Group – some design blocks may need to be 
duplicated into multiple FPGAs to increase performance 
and/or minimize the interconnects among FPGAs. 
Examples are circuits that generate global clocks. 
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Image FG-16: Grouping items to guide partitioning 

 

Splitting design blocks/IP into multiple FPGAs is half of the 
partitioning process.  FPGAs have a limited number of pins and 
therefore the other half of partitioning involves making sure there are 
enough I/Os, either physically or through pin-multiplexing. 

As newer generations of FPGAs become available, the physical I/O 
counts increase dramatically. A Xilinx Virtex UltraScale (VU) has 1,456 
I/Os and an Altera Stratix 10 is planned to have 1,600, as compared to 
the 1200 I/Os available from a Xilinx Virtex 7 (V7). The I/Os 
themselves perform better and can handle pin-multiplexing schemes 
more efficiently. For example, in Xilinx’s V7, LVDS can run at 1 to 1.2 
GHz compared to its next generation VU that can run at 1.6GHz. 

Most complex multi-FPGA designs will require the use of pin-
multiplexing for efficiency.  Therefore, it is a good idea to understand 
the different methods for conducting pin-multiplexing. The classic 
solution is to use a TDM (Time Domain Multiplexing) scheme that 
multiplexes two or more signals over a single wire or pin. 

This solution is still widely employed and serves as the foundation for 
today’s pin multiplexing. However, with advances in I/O technologies, 
the need to serve multiple clock domains, and the increasing reliability 
of pin multiplexing, many flavors of TDM have emerged to address 
different design requirements. 
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Image FG-17: Signals multiplexed with a fast clock 

 

 

Flavors of TDM 

There are many flavors of TDM methods. TDM can be either 
synchronous or asynchronous. TDM can be single-cycle or multiple-
cycles. Finally, TDM can use different I/O standards such as using 
single-ended vs LVDS I/O. 

Synchronous TDM 

In synchronous TDM the multiplexing circuitry is driven by a fast clock 
that is synchronous with the (user’s) design clock. 

Synchronous mode is sufficient for many TDM implementations, but 
there are limitations. There must be no feed-through nets between 
FPGAs before inserting TDM (signals that pass through an FPGA 
without terminating at a register). 

In addition, the difference between the fast clock and the design clock 
can introduce issues. The timing diagram below shows an example of 
this where event A is the sampling time for the fast clock, and event B 
is the sampling time for the design clock – the setup time for both 
needs to be the same as a single period of the fast clock. 

And the interface between the two clock domains could contain a 
critical path, especially when the TDM ratio is quite large. (This is true 
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even where all inter-FPGA nets are registered input/output.) This path 
is often routed poorly inside the FPGA and usually suffers from timing 
violations due to limited FPGA routing resources. This in turn 
significantly decreases the speed of the fast clock which decreases the 
speed of the design. 

Image FG-18: Synchronous TDM timing 

 

Finally, synchronous TDM typically supports only one clock per one set 
of pins. Usually this requires stricter timing constraints that can be 
hard to meet with a lot of pins, making it difficult to automate. 

Asynchronous TDM 

In asynchronous mode, the TDM fast clock runs independently of the 
design clocks. Although asynchronous mode is slower, it supports 
multiple clocks so timing constraints are easier to meet. 

Asynchronous TDM addresses the timing violations caused by 
synchronous mode, and does not require a timing constraint on the 
datapath between clock domains (usually equal to one-cycle of the fast 
clock). In fact, the fast clock can always run at its maximum speed. (For 
LVDS TDM, this is 1 Gbps for V7 and 1.6 Gbps for VU.) This means the 
design clock speed won’t be affected by a potential reduction of the fast 
clock, as in synchronous mode. 

An additional benefit is that asynchronous TDM is not sensitive to 
feed-through nets so these can be used with an asynchronous scheme. 
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However, the designer should be aware that feed-through nets 
transmitted over asynchronous TDM can impact system performance. 

Single-cycle and Multi-cycle clocks 

The majority of designs utilize a single-cycle clock. The bottleneck for 
pin multiplexing frequency becomes the latency rather than how fast 
signals can be transmitted between devices. Since LVDS has a longer 
latency, LVDS can actually be slower than single-ended signals when 
the TDM pin ratio is low. However, when the TDM pin ratio is high, 
the LVDS latency becomes less of a factor and therefore runs faster 
than single-ended signals. 

As for designs that use multiple clock cycles, they can run at full 
transmission speed. However, since the data doesn’t get to the 
destination in 1 design clock cycle, the designer must manually insure 
this is okay for their design. This issue is design dependent, and as 
result, can’t be automated. 

Single-ended signals versus LVDS 

Single-ended TDM uses a single-ended signal which can transmit 
physical signals at a speed up to 290 MHz in VU. This is determined by 
dividing the TDM ratio (or signal multiplexing ratio) and taking into 
account setup, synchronization, and board delays. 

With a TDM ratio of 4:1, the system clock speed will be around 17.8 
MHz. If the TDM ratio is increased to 16:1, the system clock speed will 
drop to less than 10 MHz. From this we can see that as the TDM ratio 
increases the performance drops linearly. 

However, using the LVDS I/O standard supported by Xilinx FPGAs, the 
physical transmission data rate between FPGAs can achieve up to 1.6 
Gbps. This offers tremendous advantages over single-ended 
transmission, even when considering that a single LVDS signal requires 
a pair of single-ended pins. 

A comparison between single-ended TDM and LVDS TDM using Xilinx 
UltraScale devices shows the difference. (Note: performance for 
different FPGA families vary.) Performance of TDM implemented with 
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LVDS is typically better than single-ended TDM, especially for higher 
TDM ratios. 

 

Image FG-19: Single-ended TDM and LVDS TDM performance  
with Asynchronous mode 

 

 

A different view illustrates another comparison of Single-ended TDM 
and LVDS TDM. It shows the number of physical I/O needed to 
accommodate a given number of virtual I/O, assuming a system speed 
of 11 MHz. This shows that for a system with a clock speed of 11 MHz, if 
12,800 virtual connections are needed, single-ended TDM consumes 
1600 physical I/O. With LVDS TDM, this number is cut in half to 800. 
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Image FG-20: Number of physical interconnects needed 
for a system running at 11 MHz 

 

Given the physical I/O limitation of FPGAs, partitioning becomes easier 
if less physical interconnections are needed. LVDS TDM has clear 
advantages over traditional single-ended TDM. 

TDM Performance Comparison 

A chart comparing asynchronous and synchronous modes with single-
ended or LVDS TDM provides a good summary of the estimated 
performances using the various forms of pin-multiplexing. No single 
method is better than the other. Preference depends on your target 
performance, your design, and the amount of effort you are willing to 
put into partitioning. For example, LVDS may not be always be faster 
than using the single-ended method because of the long set up time 
required for LVDS. Therefore, for low pin ratios, the single-ended 
method may actually be faster.  

However, if your design can afford data to get from one FPGA to 
another FPGA in multiple cycles, you can run at near full LVDS speed 
divided by the pin-multiplexing ratio. Of course, this is limited to just 
one clock domain and cannot accommodate mixing multiple clock 
domains without modifying the design. 
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Image FG-21: Comparison of TDM modes 

 

 

Traditional FPGA Debugging Methods 

Debugging in FPGAs has been difficult since day one. Unlike 
simulation where designers can see any signal at any time, signals when 
mapped to a FPGA may be difficult to locate or even worse optimized 
away. Even after you identify where the signal is, it may be difficult to 
capture the time period in which you would like to observe that signal 
as the FPGA runs at real speed and you cannot continuously capture 
and store the waveform of that signal. Therefore, some sort of 
triggering and waveform storage circuit is needed to perform 
debugging in an FPGA. There are two popular approaches today: 
external logic analyzer, and internal logic analyzer. 

External Logic Analyzers 

Let’s first take a look at the use of external logic analyzers that have 
been in use for years. Popular external logic analyzers today are from 
Agilent and Tektronix and can sample at GHz frequency and store GBs 
of waveforms. External logic analyzers have the ability to store large 
amounts of trace data but for the data to be useable, the data needs to 
be taken off the chip, which can be a difficult task.  The signals, or 
probes, designers want to observe need to be sent to FPGA I/O pins to 
connect to a logic analyzer. Since some probes may be buried deep 
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inside design hierarchy, it may be time-consuming to get the right 
probes to the top of the design. 

Physically, you also need some kind of adapter card that connects the 
FPGA I/O pins to the logic analyzer header. For example, Agilent logic 
analyzers use a 38-pin Mictor connector.  Most off-the-shelf FPGA 
boards do provide optional daughter cards that can connect the FPGA 
I/O pins to the 38-pin Mictor connector. If you are building your own 
(RYO) board, then you should reserve a set of pins to connect to the 
Mictor connectors if you choose to have the ability to observe through 
a logic analyzer. 

The biggest drawback for the use of external logic analyzers is actually 
the limited number of probes you can observe at a time since there are 
only a limited number of FPGA I/O pins you can use for debug. In most 
designs, the majority of FPGA I/O pins are used for external target 
interfaces or used as interconnects to other FPGAs if more than one 
FPGA is used. Therefore, reserving a large amount of pins for 
debugging through an external logic analyzer may not be feasible. 
Multiplexing the probes to I/O pins can solve the limited pin issue but 
is almost never used since external logic analyzers need to capture data 
at real speed and also need to support de-multiplexing on the logic 
analyzer side. 

Once connected, the external logic analyzer is used to set up triggering 
and data capture conditions. Triggering is typically done using a state-
machine technique whereby values are specified for a signal and then 
either the data is captured or a different condition is sought after on 
another state. The signals remain static while the conditions can be 
altered at any time. Trace memory using an external logic analyzer is 
rather large therefore memory can afford to be wasted trying to find 
trigger conditions that are close to desired observation points. The 
advantage of an external logic analyzer is that it can sample at high 
frequency (in the GHz range), at high accuracy, and support very 
complex triggering conditions. Today, some designers still prefer to use 
an external logic analyzer because of these advantages as well as the 
feeling that debugging needs to be seen on real equipment, not just 
through a software tool. 
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Internal Logic Analyzers 

Internal logic analyzers such as Altera’s SignalTap or the integrated 
logic analyzer (ILA) in Xilinx’s Vivado utilize cores embedded into the 
design whereby the trigger conditions are set using a GUI in software 
on a PC through a JTAG interface. The captured data is transferred to 
the PC where it can be viewed and analyzed. The internal logic 
analyzers provided by the FPGA vendors are tightly integrated with 
their FPGA place and route tool making them easy to learn and use. 

However, trace data needs to be stored in the FPGA internal block 
memory before a triggering condition is met and therefore they can 
only achieve very limited width and depth. Often, you have to choose 
between limiting the amount of memory you can have for your design 
versus allocating some memory for debugging. When a triggering 
condition is met, the logic analyzer stops storing new waveforms in the 
memory and shifts out current memory content through JTAG.  The 
process can be slow if trace data is large. The probes must be statically 
defined and trigger conditions can be dynamically changed during 
debug just like with external logic analyzers. Most internal logic 
analyzers only support probing at the gate level so signal names may 
have changed or may have even been optimized away. Since probes are 
static, to change probes you usually need to re-compile the design. 

Some third party internal logic analyzers do support RTL probing 
which can improve the user experience. They also provide more 
advanced triggering and analytic features that allow you to get 
meaningful data from limited amount of waveform storage memories 
inside an FPGA. 

Even though internal logic analyzers supplied by the FPGA vendors 
have some limitations, they are still by far the most popular tools used 
for FPGA debugging today. This is due to their relative low-cost and 
tight integration with the FPGA vendors’ own place & route tools. 

Multi-FPGA Debugging Methods 

External and FPGA Internal Logic Analyzers are better suited for 
debugging a single FPGA.  Although external logic analyzers can probe 
signals simultaneously from a multi-FPGA environment, the limited 
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number of probes available makes debug inefficient. Debugging only 
one FPGA at a time in a multi-FPGA environment makes effective 
debug of the design significantly more difficult, time-consuming, and 
error-prone. These logic analyzers can only provide a subset of the 
picture in which to debug and don’t have the trace depth for delving 
into the behavior of a multi-FPGA design. Debugging only a piece of 
the design at a time can lead to errors in other parts of the design as 
the bugs are fixed. The difficulties involved with this type of approach 
are illustrated in the diagram below.  

 

Image FG-22: Debugging multi-FPGA prototypes means  
examining waveforms for each device separately 

 

 

What’s needed is a holistic approach to debug for multi-FPGA 
platforms to ensure design behavior is not affected as bugs are 
corrected because RTL-level signals and module names are maintained 
throughout. With the use of a configurable external module, multi-
FPGA debug will also allow for the detection of very hard to find corner 
case bugs because of the deep trace depth that can be achieved.  
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Image FG-23: Benefits of using a multi-FPGA debug approach 

 

To understand this more, let’s take a look at how multi-FPGA debug 
actually works. In the diagram below you can see that you must first 
mark probes at the RTL level so the probes are maintained throughout 
the compile flow. There should be no limit to how many probes you 
can mark as this simply tells the synthesis and partition tools to retain 
the RTL names for probing. After a design is partitioned to multiple 
FPGAs you can start selecting the signals you would like to probe in 
each FPGA. Multiple groups should be supported so you can see 
thousands of signals from any FPGA. Debug instrumentation is then 
added to each FPGA for FPGA place-and-route. Note that since the 
triggering logic and waveform storage are performed using an external 
module, the debug instrumentation in each FPGA consumes very little 
resources inside your design FPGA. 

After the multi-FPGA design is compiled and downloaded to FPGAs, 
you can now set your trigger conditions and the information is 
uploaded into the dedicated debug module hardware. When you start 
running your design, the debug module will capture and store the 
waveforms continuously from multiple FPGAs in external DDR 
memory. The communication bandwidth between the debug module to 
each FPGA needs to be high in order to trace wide waveform at high 
speed. Then, when a trigger condition is detected by the debug module, 
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the DDR3 memory content is sent to the host computer for analysis via 
a high speed PC port such as Gigabit Ethernet. The waveforms in VCD 
or FSDB format can then be debugged using popular waveform debug 
tools such as Synopsys Verdi. Signals from multiple FPGAs can be 
viewed in a single waveform window. 

Image FG-24: Multi-debug flow 

 

The use of a separate debug module of this nature allows for deep trace 
with a large number of RTL-level probes, the use of minimal FPGA 
resources to avoid design impact, and system-level debugging across 
the entire SoC design. An example of this device is the Prodigy Multi-
Debug Module from S2C. The Prodigy Multi-Debug Module supports 
up to 32 FPGAs at a time with 16GB of DDR3 trace buffer and can 
utilize up to four 5GHz transceivers to capture waveforms from each 
FPGA to the debug module. The use of Gigabit Transceivers allows 
large amounts of data to be transmitted at high frequency.  General 
purpose I/O pins are not occupied by debugging so they can be used 
for interconnecting between FPGAs and external interfaces. Deep trace 
is achieved with 16GB or trace memory with actual trace depth 
dependent on the number of signals that are probed. S2C also provides 
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an easy-to-use GUI (as shown below) that allows you to mark probes in 
RTL before synthesis, quickly locate probes after design partitioning, 
and select probes before FPGA place-and-route. 

Image FG-25: Mark probes in Prodigy Player Pro 

 

There are variations of the above multi-FPGA debug approach. There 
are solutions that use cascading instead of distributed topology to 
collect trace data from multiple FPGAs. Cascading topology means that 
trace data from multiple FPGAs needs to be collected to a single FPGA 
through potentially many FPGAs before transmitting to an external 
debug module for storage. Cascading topology is easier to implement in 
hardware but the large debugging data going from FPGA to FPGA can 
create a bottleneck that in turn reduces the amount of probes that can 
be seen at any one time and decreases the speed at which they can be 
captured. Distributed topology, on the other hand, sends debug data 
continuously from every FPGA directly to the external Debug Module.  
The hardware is more difficult to implement but this method can 
maximize the number of probes that can be seen at the same time as 
well as produce faster capture speed. 

Other advanced FPGA Debug Techniques 

One technique to increase trace depth is to compress the waveform 
being temporarily stored in the memory. The compression needs to be 
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lossless and meet the performance required to continuously store 
incoming waveforms from multiple FPGAs. This waveform 
compression technique has already been developed in some third party 
FPGA debug tools to address the trace depth issue.  

Hardware assertions in FPGAs is another interesting area that can 
make debugging FPGAs easier. Instead of continuously capturing large 
amounts of data and looking for trigger conditions to shift out the 
waveform for analysis, you can embed the conditions that you are 
looking for together with your design in the FPGA. When such 
conditions occur, you receive high level messages such as: a memory is 
full, a bus has a contention, the CPU is at a specific state, and more. 
Nevertheless, most tools today do not generate synthesizable assertions 
that can be mapped in FPGAs so designers will have to write and 
embed assertions in the FPGAs themselves. 

Finally, some newer FPGA families now support register and memory 
readbacks and even allow you to set the register and memory content. 
The readback feature enables you to access all nodes inside an FPGA at 
a given time. However, to access that information you would need to 
stop the design clock to shift out the register data. Therefore, this 
feature can only be used when the design is run in a controlled clock 
environment and not really useful when running FPGA prototypes in or 
close to real time speed. In addition, just by taking a snapshot of what’s 
inside an FPGA cannot solve the issue/bug you are looking for. Are you 
taking the right snapshot and how many snap shots do you need to 
take? Readback data is often shifted out through a JTAG port which is 
also very slow when dataset is large. FPGA vendors do have plans to 
improve this feature by allowing shifting out the readback data without 
stopping the clock as well as using a faster protocol to shift out the 
data. We hope to see better support of this feature from Xilinx and 
Altera and also a complete environment that allows designers to 
quickly see what they are looking for. 

Exercising the Design 
Now that we’ve covered the components of an FPGA prototyping flow 
and how to maximize the available technologies within the flow, we 
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can move on to the final topic of exercising the design and the methods 
that are used to perform actual testing. 

Often, simulation and/or emulation are the first things we think of 
when talking about testing the design. However, it is worth 
remembering that neither simulation and emulation can run at speed 
or close enough to actual speed for in-circuit testing. Although 
emulation can allow you to get up and running quickly, it is very costly. 
FPGA prototyping is the most practical method for doing complex and 
thorough pre-silicon tests as well as early software development.  We 
will now cover two popular test methods using FPGA prototyping. 

In-Circuit Testing 

The common definition of In-Circuit testing is to connect your design 
to real targets intended by your final chip for real world tests before 
you have the silicon.  FPGA prototyping, which can operate at or near 
final chip speed. allows you to simply build those system target 
interfaces either directly on the FPGA boards or through the use of 
daughter cards. 

Image FG-26:  In-circuit testing 
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The use of daughter cards allows an FPGA prototyping system to be 
flexible and scalable. The main FPGA prototyping system can be used 
to connect to different in-circuit test targets depending on the design 
requirements or can connect to other FPGAs for expansion with the 
unused I/O pins. You can either use third party daughter cards that are 
usually designed specifically for an application or build your own 
daughter cards that fit your application requirements exactly. 

Building your own daughter card(s) for FPGA prototyping is actually 
not a bad idea since it is unlikely you’ll find a daughter card that meets 
your various in-circuit test requirements exactly. Also, the complexity 
of building a daughter card is a lot less than building the main FPGA 
board and you may be able to reuse the daughter card for your next 
project if there are no significant changes in the chip interfaces. 
However, by using commercial daughter cards you can still save 
precious engineering time and resources in addition to reducing risks. 
Many of today’s chip interfaces use industry standards such as USB, 
PCIe, Ethernet, DDR, and others, and there are usually commercial 
daughter cards available that will meet your requirements. 

So what are the considerations for choosing daughter cards or the 
FPGA prototyping systems that will hold the daughter cards? Well, the 
FPGA prototyping system you select should have abundant unused I/O 
pins on I/O connectors in order to use daughter cards.  Naturally, the 
most important methods for evaluating a prototyping system in this 
regard is to examine the type of I/O connectors the system uses, how 
the pins are defined, what features the FPGA board supports for using 
the daughter cards, and the availability of different types of daughter 
cards so you do not have to build everything on your own. The list 
below is a good starting point for you to evaluate if a system is ideal for 
doing in-circuit testing through reusable daughter cards: 

• What type of connectors are being used on the FPGA board and 
how many daughter cards are available for that connector? 

• Does the type of connector support high speed I/Os such as LVDS 
and multi-GHz transceivers? 

• How many connectors are available on the FPGA board so you 
can connect to different targets at the same time? 
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• How many I/O pins are on the connector and how are the I/O 
pins/banks optimized on the connector? 

• How will the daughter cards get power? 
• What are the I/O voltages that are supported on the connector so 

you can pass power from the FPGA board to the daughter cards? 
• Are there physical limitations on the size of the daughter card 

and how reliable is the daughter cards physically? 
• Are the daughter cards testable? 
• For an off-the-shelf daughter card, does the vendor provide tests? 

One of the popular connector standards for daughter cards is FMC.  It 
has been used by Xilinx evaluation boards for many years and comes in 
2 flavors: HPC, which has a higher pin count with transceivers, and 
LPC, which has fewer pins and no transceiver support.  There are many 
off-the-shelf daughter cards that are based on the FMC standard thanks 
to the popularity of the Xilinx evaluation boards. However, FMC is not 
an ideal choice for high-end prototyping systems because the 
connector is physically too big with too many I/O pins per connector so 
you will not have many I/O connectors on a single board. The I/O 
connectors are used for daughter cards as well as interconnecting 
multiple FPGAs together. Also, FMC connectors have poor 
interconnection cable support. As a result, most advanced prototyping 
systems define their own connector standards to solve the deficiency of 
the FMC connector.   

As an example, S2C’s Prodigy Connector is a compact, high-
performance, 300 pin connector that can support the running of multi-
GHz transceivers. It supports 3 full FPGA I/O banks and all traces from 
the same I/O connector have the same length. The Prodigy Connector 
has a matching Prodigy Cable that can connect 2 Prodigy Connectors 
with pin 1 matching pin 1. The Prodigy Connector supplies 2 voltages 
from the FPGA board to the daughter board: 3.3V and VCCIO voltages.  
In addition, there is an I/O voltage detection function so when the 
wrong voltage is input into the daughter card from the FPGA board, 
the power will be automatically shut off. 

S2C has dozens of daughter cards including processors, embedded, 
multimedia, and memory, that can run on Prodigy logic modules, and 
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many have reference designs to run out-of-the-box.  S2C also provides 
an FMC to Prodigy Adapter Module so FMC daughter cards can also be 
used on Prodigy logic modules.  

Daughter card modules can be reused across multiple configurations of 
FPGA prototypes and among multiple projects/locations. Employing 
these daughter cards within a complex environment is simplified with 
the use of auto-detection technology that indicates the presence of a 
specific daughter card and allows for the configuration of design data 
related to the specified daughter card. S2C Prodigy Daughter Cards 
support this advanced feature. 

Some vendors also provide daughter card customization services 
targeting special system interface requirements that cannot be met by 
off-the-shelf solutions. These services usually entail collaboration to 
understand your needs in creating a detailed specification of the 
daughter card.  Once the specification is complete, the daughter card is 
designed, developed, and then thoroughly tested.  A reference design is 
typically included that will help in the actual use of the daughter card 
on your design. These services can be extremely beneficial if you are 
working on a tight time-to-market schedule and cannot support the 
engineering resources internally to create your own. 

In-circuit testing using FPGA prototyping allows you to obtain detailed 
system performance metrics and proof-of-concept results quickly and 
easily. Detecting issues such as functional definition errors or system-
level timing errors are just a couple of examples of the system data that 
can be collected. FPGA prototyping offers uncompromised flexibility 
with support for industry bus standards such as PCIe, USB, Ethernet, 
and more, simplifying the testing associated with these standards. 

Hybrid Prototyping 

In-circuit testing is probably the most important reason for doing 
prototyping today. But in-circuit tests are usually based on un-
constrained random tests, which don't always ensure complete test 
coverage. Using a transactor interface allows test cases developed in 
simulation to be run directly on the prototype making these tests 
instantly available and insuring compliance. Moreover, these tests can 



PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design 

102 
 

be easily extended to large data sets, providing coverage for corner 
cases and hard-to-find bugs. 

The addition of a transactor interface to an FPGA-based prototype 
facilitates development of new systems in interesting ways. As 
behavioral models are introduced, architectures become refined and 
block functionality determined. These blocks are eventually defined 
and implemented as part of the new system. But blocks that are defined 
and rendered in RTL become IP for the next generation of systems, 
allowing the cycle of development to repeat. In this way, an FPGA 
prototyping platform becomes the engine of system advancement. 

Image FG-27: Behavioral models and transactors 

 

FPGA-based prototyping is well-suited for designs fully rendered in 
RTL and that can be mapped to an FPGA. However, many designs may 
not be completely mapped to an FPGA and may only be partially 
available as behavioral models in descriptions such as C++ or SystemC. 
In these cases, transaction-level interfaces play a critical role in being 
able to bridge the abstraction level between behavioral models and live 
hardware. These transactors offer a way to communicate between 
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software running on a host and an FPGA-based prototyping platform 
that often includes memories, processors, and high-speed interfaces. 

S2C’s unique patent-pending Prodigy ProtoBridge™ System is a 
solution that allows for just this type of high-speed communication. 
ProtoBridge supplies a transactor interface between a software program 
and the world of AXI-compliant hardware. There are two key parts to 
this: an AXI-to-PCIe bridge that connects to a host computer, and a C-
API that communicates to the design through the bridge. The software-
to-AXI transactor offers new flexibility to designers building ARM-
based systems. Coupling this to a PCIe interface supporting transfer 
speeds up to 1000 Mbytes/sec provides a perfect development platform 
for data-intensive applications. 

Image FG-28: S2C Prodigy ProtoBridge 

 

A system like this allows designers to maximize the benefits of FPGA-
based prototypes much earlier in the design project for algorithm 
validation, IP design, simulation acceleration, and corner case testing. 
A prototype combined with a transactor interface makes a range of 
interesting applications possible throughout the design flow. 
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Coding with FPGA-based Prototyping in Mind 
We’ve walked you through the steps for effectively implementing an 
FPGA prototyping methodology. We discussed how to choose the 
prototyping system that fits your design requirements and how to 
extend and scale that system as your design needs change. You should 
also now have a good understanding of the best practices for 
partitioning, debugging, and exercising your design. 

What about taking FPGA-based prototyping to the next level? How can 
you maximize your FPGA prototyping experience? The next step in the 
process is to code your design with FPGA prototyping in mind. This 
topic was explored briefly by Mon-Ren Chene in his foreword to 
“Prototypical” and will become a key launching point for the future of 
FPGA-based prototyping. We look forward to providing you with the 
knowledge you need to further your FPGA prototyping goals.
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“Our commitment to customers has been to push the limits of 
what FPGA prototyping can do to make designing easier, faster, 
and more efficient.”

- Mon-Ren Chene, CTO of S2C

PROTOTYPICAL looks at the history of FPGA-based prototyping 
and its role in SoC design, along with a look forward at how it 
can help application segments such as automotive, the IoT, and 
wearables. A practical Field Guide is included addressing 
questions designers typically have, the issues they often run 
into, and technical approaches to solve them.
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