
DANIEL NENNI
& DON DINGEE
A SEMIWIKI PROJECT

PROTOTYPICAL

The Emergence of
FPGA-Based Prototyping

for SoC Design

Includes All-New

Field Guide

PROTOTYPICAL

The Emergence of
FPGA-based Prototyping

for SoC Design
Foreword by Mon-Ren Chene, CTO of S2C Inc.

Daniel Nenni
Don Dingee

@2016 by Daniel Nenni and Don Dingee

All rights reserved. No part of this work covered by the copyright herein
may be reproduced, transmitted, stored, or used in any form or by any
means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, taping, digitizing, web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 US Copyright Act, without
the prior written permission of the publisher.

Published by SemiWiki LLC
Danville, CA

Although the authors and publisher have made every effort to ensure the
accuracy and completeness of information contained in this book, we
assume no responsibility for errors, inaccuracies, omissions, or any
inconsistency herein.

Custom printed for S2C at DAC 2016 by OneTouchPoint, Austin TX

First printing: June 2016
Printed in the United States of America

“Implementing an FPGA Prototyping Methodology” Field Guide included
with permission of S2C, Inc.

Edited by: Shushana Nenni

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

iii

Contents

Foreword ... v

The Future of FPGA Prototyping .. v

Design for FPGA Prototyping .. v

Moving to the Cloud ... ix

Introduction: The Art of the “Start” .. 1

A Few Thousand Transistors ... 2

Microprocessors, ASICs, and FPGAs ... 5

Pre-Silicon Becomes a Thing ... 7

Enabling Exploration and Integration .. 10

Chapter 1: SoC Prototyping Becomes Imperative ... 15

Programmable Logic in Labs .. 15

First Productization of Prototyping .. 18

Fabless and Design Enablement .. 20

Chapter 2: How S2C Stacked Up Success .. 25

Making ESL Mean Something ... 25

TAI IP and “Prototype Ready” ... 26

Taking on the Cloud .. 30

Chapter 3: Big EDA Moves In ... 35

A Laurel and HARDI Handshake .. 35

Verification is Very Valuable ... 37

An Either-Or Response .. 39

A Bright Future Ahead ... 41

Chapter 4: Strategies for Today and Tomorrow .. 45

The State of FPGA-Based Prototyping .. 45

Developing for ARM Architecture ..48

Adoption Among Major System Houses .. 51

Application Segments in Need .. 52

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

iv

FIELD GUIDE ... 59

When Do You Need an FPGA-based Prototyping Solution? 61

How Do I Choose Which Solution to Implement? 64

Building a Scalable Prototyping Platform ... 69

Overview of the FPGA Prototyping Methodology Flow 78

Details of Implementing the FPGA Prototyping Flow 81

Exercising the Design ... 97

Coding with FPGA-based Prototyping in Mind 104

About the Authors

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

v

Foreword

The Future of FPGA Prototyping
Nearly two decades ago during our time at Aptix, my S2C co-founder,
Toshio Nakama and I recognized the power of prototyping. At that time,
prototyping was only accessible by large design houses with the budget
and means to employ a prototyping architecture. We also recognized
that FPGAs had become a popular alternative to the much more
expensive and rigid ASICs. It was then that we both decided to team up
to develop a prototyping board around an FPGA, and S2C was born. Our
commitment to our customers has been to push the limits of what FPGA
prototyping can do to make designing easy, faster, and more efficient.
Our goal has always been to close the gap between design and
verification which meant that we needed to provide a complete
prototyping platform to include not only the prototyping hardware but
also the sophisticated software technology to deal with all aspects of
FPGA prototyping.

Fast forward to today and you’ll find that FPGAs and FPGA prototyping
technology has advanced so much that designers and verification
engineers can no longer ignore the value that they bring, especially
when dealing with the very large and complex designs that we see today.
These advances have made FPGA prototyping poised to become a
dominant part of the design and verification flow. This book will
hopefully give you a sense of how this is achieved.

But what’s next for FPGA prototyping? Having dedicated my time to
working with our customers in developing the evolution of FPGA
prototyping, I have figured out two things: FPGA prototyping needs to
be part of the conversation early on in the design process, and FPGA
prototyping needs to move to the cloud.

What do I mean by these two statements? Well, let’s break it down.

Design for FPGA Prototyping
Making FPGA prototyping part of the design process early means
actually thinking about how the design will be prototyped via an FPGA

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

vi

as you design – Design for FPGA Prototyping. Designing for prototyping
will significantly speed up the FPGA prototyping process downstream.
It will aid in the act of synthesis, partitioning, and debug. I’ve outlined
six ways that this is achieved:

1) Prototyping-friendly Design Hierarchies

Design architects can make the job of prototyping much easier
for engineers to implement FPGA prototyping by modifying the
design hierarchy to work better in a prototyping environment.
The engineers who perform implementation or verification
usually have very little ability to improve prototyping
performance once the design hierarchy is fixed. The need to do
partitioning down to the gate level can be removed if the size of
each design block can be kept to one FPGA. Furthermore,
modifying the design hierarchies early can help to avoid pin
congestion as many times a design becomes very difficult to
implement in an FPGA or becomes very slow because there’s a
central block that has tens of thousands of signals that need to
go to multiple blocks in different FPGAs. Design architects can
also ease prototyping by providing guidance to their FPGA
implementation team(s).

2) Block-based Prototyping

Instead of hoping the entire design will magically work when
mapped and downloaded to multiple FPGAs, bringing up sub-
systems of the entire design, block by block, will allow quick
identification of both design issues in a sub-block as well as any
issues related with mapping the design to the FPGA(s). Block-
based prototyping works well especially with designs that
contain many 3rd party IPs that also needs a lot of real time
testing and early software development.

And very often, designers don’t even have the RTL source code
for the IP blocks from 3rd parties (for example, ARM processors)
and therefore cannot map the IP to the FPGAs themselves. This
can be solved by requesting the IP provider to supply the
encrypted netlist so that you can synthesize and partition the

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

vii

entire design while treating that IP as a black-box. As long as you
specify the correct resources (LUT, registers, I/Os), the
prototype compile software should take those resources into
account when partitioning to multiple FPGAs. You can then
integrate the encrypted netlist during the place and route stage.

I’ve come across customers that want to do an FPGA
implementation but are reusing some very old blocks with only
the ASIC netlist and without RTL. Implementation becomes
very difficult since the details of the design are unknown. These
legacy designs are usually only accompanied by a testbench. In
this case, the best approach is to covert the ASIC gates to an
FPGA and to use a co-simulation environment (such as S2C’s
ProtoBridge™) to verify if the functionality of the block is correct
before integrating it with the entire design. Unfortunately, this is
still a painful process so designers should consider either not
using those legacy blocks or re-writing them.

Note that a reconfigurable and scalable prototyping system is
needed for a block-based prototyping methodology, as well as a
robust partitioning and FPGA prototyping software flow.

3) Clean and Well-defined Clock Network for Prototyping

Many ASIC designs have tens or even hundreds of clocks and
most of them are just for power management/saving. Even with
the most complex designs there are usually a few real system
clocks plus some peripheral clocks such as PCIe and DDR.
Peripheral clocks usually reside in a single FPGA which has the
actual external interface pins and therefore are easy to
implement. System clocks, however, need to go to every FPGA
and therefore should be clean for FPGA implementation.

ASICs use a lot of gated clocks to save power. Today’s FPGA
synthesis tools have advanced to take care of most of the gated
clocks, but there may still be some gated clocks that go
undetected and therefore cause design issues. This can easily be
avoided by creating two different RTL clock implementations for
the ASIC and the FPGA by using IFDEF.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

viii

Internally generated clocks can also be a problem for an FPGA
prototyping environment as they all need to get on the FPGAs’
global clock lines and synchronize among all the FPGAs. A
Multi-FPGA prototyping system will have a limitation on how
many of these global clocks can be supported therefore the
number of the internally generated clocks should be restricted
(or again use two implementations in the RTL: one for ASIC, and
one for FPGA).

4) Memory Modeling

ASICs support many different types of memories while FPGAs
usually support two types: synchronous dual port memories, or
the use of registers and LUTs to build custom memories. The
latter one consumes large amounts of logic resources and might
cause place and route congestion. Most ASIC memories can be
re-modeled to take advantage of the block memories in the
FPGA but a manual process may be required to do that. Again,
instead of having the engineers who try to implement the ASIC
design in a FPGA model the memories, a better approach would
be to have the architects plan the designs with two memory
implementations both for ASICs and FPGAs. The RTL designers
then code using IFDEF to have the two implementations. FPGA
prototyping becomes easy by just instantiating the correct
memory implementations.

5) Register Placement on the Design Block I/Os

FPGAs usually have a lot of register resources available for the
design but most ASIC designs try to use less registers to save
area and power. Ideally, all block I/Os should be registered for
FPGA implementation to achieve the best results. At a minimal
all outputs should be registered so no feed-through nets (which
impact system performance by half) will be created after design
partitioning. As a result, there will be a noticeably higher FPGA
prototyping performance with this approach.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

ix

6) Avoid Asynchronous or Latch-based Circuits

Asynchronous circuits and latch-based designs are FPGA un-
friendly. It is very hard to fine-tune timing in an FPGA with
every FPGA having to be re-place and re-routed multiple times.
These issues become even worse when the asynchronous circuits
have to travel across multiple FPGAs.

Moving to the Cloud
We are living in an age where design teams no longer reside in one
geographic location. No matter how big or small, companies have
multiple design teams in multiple locations. A cloud-based FPGA
prototyping system is an ideal way for dispersed teams to manage the
prototyping process and resources.

Furthermore, as smaller IoT designs proliferate the market, FPGA
prototyping must become accessible to these designers. Today’s FPGA
prototyping, although effective, can be costly for smaller IoT designers
to adopt. The reusability of boards becomes less viable so costs cannot
be amortized over multiple design starts. By moving to the cloud, FPGA
prototyping solutions can become a shared resource and thus can
reduce cost inefficiencies.

The future of FPGA prototyping is strong. It has and will continue to
demonstrate itself as one of the most effective solutions to realizing the
full potential of any design.

Mon-Ren Chene
CTO of S2C, Inc.

May 2016

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

x

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

1

Introduction: The Art of the “Start”

The health of the semiconductor industry revolves around the “start”.
Chip design starts translate to wafer starts, and both support customer
design wins and product shipments. Roadmaps develop for expanding
product offerings, and capital expenditures flow in to add capacity,
enabling more chip designs and wafer starts. If all goes according to
plan, this cycle continues.

In the immortal words of an engineering manager from once upon a
time, “You didn’t say it has to work.” Chip designs have progressed from
relatively simple to vastly complex and expensive, and the technology to
fabricate them has shrunk from dimensions measured in tens of microns
to tens of nanometers. Functions once dictated by distinctive symbols
and lines or ones and zeroes in a table now center on executing
powerful operating systems and application software and streams of
rapidly flowing data.

 Keeping the semiconductor cycle moving depends on delivering
complex chip designs, completely verified with their intended software
environment, faster and more accurately. Wafer fab facilities now
approach tens of billions of dollars to construct and equip, producing
massive high-capacity wafers. One malevolent block of logic within a
chip design can cause expensive wafers to become scrap. If that flaw
manages to escape, only showing itself in use at a critical moment, it can
set off a public relations storm questioning a firm’s design capability.

Verification is like quality: either it exists, or it does not. Only in a
context of project management does partial verification of a design
mean anything.

With the stakes so high for large, sophisticated chips, no prudent leader
would dare avoid investments in semiconductor process quality.
Foundries such as GlobalFoundries, Intel, Powerchip, Samsung, SMIC,
TSMC, UMC, and others have designed entire businesses around
producing quality in volume at competitive costs for their customers.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

2

Yet, chip design teams often struggle with justifying verification costs,
settling for doing only part of the job. A prevailing assumption is the
composite best efforts of skilled designers using powerful EDA tools
should result in a good design. Reusing blocks from known-good
sources, a long-standing engineering best practice in reducing risk and
speeding up the design cycle, helps.

Any team that has experienced a chip design “stop” knows better. Many
stories exist of a small error creeping through and putting a chip
design, and sometimes a reputation, at risk. The price of non-
verification of both hardware and software of a design can dwarf all
other investments, and instantly thwart any prior success a firm may
have enjoyed.

This is where FPGA-based prototyping comes in. A complete verification
effort has traceable tests for all individual intellectual property (IP)
blocks and the fully integrated design running actual software (co-
verification), far beyond what simulation tools alone can do in
reasonable time. Hardware emulation tools are capable, fast, but highly
expensive, often out of reach for small design teams. FPGA-based
prototyping tools are scalable, cost-effective, offer improved debug
visibility, and are well suited for software co-verification and rapid
turnaround of design changes.

In this book, we uncover the history of FPGA-based prototyping and
three leading system providers – S2C, Synopsys, and Cadence. First, we
look at how the need for co-verification evolved with chip complexity,
where FPGAs got their start in verification, and why ASIC design
benefits from prototyping technology.

A Few Thousand Transistors
One transistor came to life at Bell Labs in 1947. Solid-state electronics
held great promise, with transistors rapidly improving and soon
outperforming vacuum tubes in size, cost, power consumption, and
reliability. However, there were still packaging limitations in circuit
design, with metal cans, and circuit boards and wires, and discrete
passive components such as resistors and capacitors. 1

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

3

In 1958, Jack Kilby of TI demonstrated a simple phase-shift oscillator
with one bipolar transistor and roughly hewn resistors and capacitors
on one slice of germanium, with flying wire connections on the chip. By
1960, Fairchild teams led by Robert Noyce had a monolithic integrated
four-transistor flip-flop running in silicon, a more stable and mass-
producible material and process. 2, 3

Standard small-scale integration (SSI) parts appeared in 1963, with
Sylvania’s SUHL family debuting as the first productized TTL family. TI
followed with the military grade 5400 Series and the commercial-grade
7400 Series, setting off a parade of second-sourcing vendors. In rough
terms, these SSI parts used tens of transistors providing a handful of
logic gates. 4

Medium-scale integration (MSI) first appeared with the 4-bit shift
register – a part that Irwin Jacobs of Qualcomm fame proclaimed in a
1970 conference as “where it’s at” for digital design. MSI parts with
hundreds of transistors extended the productized logic families with a
range of functions, but were still simple to use. Where SSI parts offered
several individual gates in a single package with common power and
ground, MSI parts usually grouped gates into a single functional logic
block operating on multiple bits of incoming data. Pin counts and
package sizes remained small.

SSI and MSI parts are the electronic equivalent of hand-chiseled
statues. Producing a mask was labor-intensive, with layouts carefully
planned and checked by engineers. Vendors heavily parameterized
parts across variables of voltage, temperature, rise and fall time,
propagation delay, and more. Each chip was a small block of IP, taken
as golden, assembled into a system using wire wrapping or stitching for
prototypes or short runs, and printed circuits for finished product in
higher volumes. Everything about an SSI or MSI design was readily
visible just by probing with an oscilloscope or logic analyzer at the
package pins, and problems were usually somewhere in the wires in
between.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

4

Image I-1: Texas Instruments SN74S181N 4-bit ALU with 63 logic gates

That changed drastically when large-scale integration (LSI) parts
emerged. The early 1970s saw chips for digital watches, calculators, and
the first integrated computer memories, each with a few thousand
transistors. LSI parts were analogous to Mount Rushmore – carved
from the monolith in labor-intensive steps. Parts were harder to verify
post-layout, and more expensive to fabricate. Packaging changed as
chips had significantly more I/O pins. Second-sourcing became less
common as vendors protected their high-value IP.

Using LSI chips changed as well. The good news was more functions
were integrated. The bad news was board-level test visibility declined,
with designers having to trust the data sheet because the inner
workings of a chip were mostly impenetrable. Chip errata become
commonplace; instead of fixing the chip layout immediately, vendors
spent energy on diagnosing issues and determining workarounds,
waiting to gather enough fixes to justify a chip respin.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

5

Microprocessors, ASICs, and FPGAs
Entire “processors” combined LSI, MSI, and SSI chips. A prime example
was a Linkabit design in 1971 for a Viterbi decoder – 360 TTL chips on
12 boards, in a single 4.5U rackmount enclosure replacing a couple
cabinets of earlier equipment. Assembly language programming took
shape, with simple instruction sets. This was exactly the transformation
Jacobs had been talking about, but his firm and many others were
looking beyond, to bigger chips that consolidated functions. 5

Image I-2: Intel 4004 microprocessor

Intel moved to the lead in LSI with offerings in DRAM, EPROM, and a
new type of chip in November 1971: the microprocessor. Its first part
sprang from a custom product for a Japanese calculator vendor. The
4004 4-bit microprocessor debuted under the MCS-4 banner,
including RAM and ROM and a shift register tuned for the 4-bit
multiplexed bus. With 2300 transistors fabbed in 10 micron and
running up to 740 MHz, the 4004 had 16 internal registers and offered
46 instructions. 6

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

6

Feverish competition ensued as a slew of vendors created new 8-, 16-,
and 32-bit microprocessor architectures during the late 1970s and early
1980s. Even with lengthy schedules and meticulous design checking,
very few of these complex chips worked the first time. Design and fab
costs continued escalating as transistor counts moved into the tens of
thousands and beyond.

Most of these microprocessor vendors had large fabrication facilities
and proprietary design flows tuned to their engineering standards and
fabrication process. A sea change was occurring in VLSI (very large
scale integration), with several technological advances opening the way
for new vendors.

The first usage of ASICs was as glue logic for improved integration, or
as companion chipsets to microprocessors, often customized to a
specific board design. A growing roster of ASIC vendors eventually
including AT&T, Fujitsu, IBM, LSI Logic, Plessey, Toshiba, TI, and VLSI
Technology were working to abstract the design flow with tools, IP
libraries, and fab qualification. For the first time, design teams at a
customer could create parts using “standard cells” and get them
produced at moderate risk and reasonable lead times of a few months.

The average 32-bit microprocessor trended toward bloated, with more
transistors to execute maddeningly complex instruction sets (CISC)
with routine and not-so-routine operations and specialized addressing
modes. Researchers tore into the flow of instructions, deciding that
only a few mattered, and came up with the idea of Reduced Instruction
Set Computing, or RISC. ASICs and RISC were a match made in heaven,
and MIPS Computer Systems, Sun Microsystems, and others soon burst
on the scene with new processor architectures.

Another breakthrough was near. Altera took an idea from the research
halls of GE, combining the elements of EPROM memory with CMOS
floating logic gates, and added synthesis software in 1984. A logic
design for the Altera EP300 could be created on a PC in a week or so
using schematic capture, state machine, or logic table entries. Parts
could be “burned”, and easily erased with an ultraviolet light and
reprogrammed as needed, in a matter of hours. Customers with

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

7

conventional digital logic schematic entry skills had access to relatively
high customization with very low turnaround time. 7

Image I-3: Altera EP300 programmable logic device

A different technology appeared on November 1, 1985, with the
thundering headline, “Xilinx Develops New Class of ASIC”. The
XC2064 logic cell array was RAM-based, loading its configuration at
boot time. Soon to be labeled by the media as a field programmable
gate array or FPGA, these first parts featured 1200 gates, offering more
scalability and higher performance. Logic could be simulated on a PC,
and in-circuit emulation aided in functional verification. 8

Pre-Silicon Becomes a Thing
With programmable logic in its infancy, VLSI designs were still
territory for ASICs. Even moderate risk using ASIC technology was still
significant. The SPARC I processor took four respins to get right. In
contrast, the ARM1 processor at Acorn Computers powered up and ran
on its first arrival from VLSI Technology in April 1985 – a minor miracle
that shocked its creators, and still stirs amazement.

EDA tools from pioneers Daisy, Mentor, and Valid were being adapted
from circuit board design to ASIC tasks. Rather than capturing a design

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

8

and tossing it into silicon and hoping for good results, more emphasis
was being placed on logic simulation. EDA workstations were relatively
fast, but simulation of a VLSI design was still a tedious and slow
process, requiring skill to create a testbench providing the right stimuli.
Still, ASIC simulation was cheaper than a failed piece of silicon and
more dollars and several more months waiting for a fix. 9

Major innovation was happening at Intel. Thanks to success in PC
markets, its microprocessor families progressed rapidly. Design of the
first mainstream PC processor, the 8088 released in 1979, involved
painstaking human translation of logic gate symbols into transistors.
For the 80286 debuting in 1982, an RTL (register transfer level) model
drove high-level design and timing analysis, but manual translation
into transistor structures was still necessary. The 80386 launched in
1985 saw wider use of RTL synthesis and a move toward CMOS
standard cells, with only several specific logic blocks hand optimized.

If Intel was to keep its winning streak going, development processes
had to change to shorten the cycle time for increasingly complex parts.
Beginning in 1986, Intel made a $250M investment for its next
microprocessor design, including a proprietary system of EDA tools
and practices. To enable fully automatic synthesis of layout from RTL,
teams created iHDL, built logic synthesis tools from code developed at
the University of California, Berkeley, and formalized and extended the
standard cell library. The result was the 80486, breaking the 1 micron
barrier with a staggering 1.18M transistors in 1989. 10

Just as ASIC vendors discovered, Intel found simulation too slow and
falling further behind. RTL simulations were chewing up more than
80% of Intel’s EDA computing resources, and verification was growing
non-linearly with processor size. A solution would come from an
unexpected source: the FPGA community.

In May 1988, a small company – Quickturn Systems – introduced a new
type of development platform aimed at ASIC designers. The Rapid
Prototype Machine (RPM) used an array of Xilinx XC3090 FPGAs in a
hypercube interconnect. Its software could take an ASIC netlist of
hundreds of thousands of gates, partition it into the FPGA array, and

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

9

emulate the design up to a million times faster than software
simulation. 11

Image I-4: Quickturn Systems RPM datasheet

At those speeds, much more serious pre-silicon testing became feasible.
Intel embraced the concept, putting its new P5 microarchitecture
through its paces on a cluster of 14 Quickturn RPM systems – 7 for
integer operations, 4 for caches, and 3 for floating point. In a November
1991 demonstration, an Intel VP ran a Lotus 1-2-3 spreadsheet on a P5
model in the Quickturn cluster. Customers considering RISC
processors shelved plans, opting to wait for Intel to deliver. 12

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

10

Running trillions of simulation clocks in this environment, Intel was
able to debug development tools and clobber several errata and various
operating system incompatibilities before committing to expensive
silicon. More importantly, the effort sawed several months off their
development schedule, leading to a timely release of the Pentium
microprocessor in March 1993. 13

Enabling Exploration and Integration
Strictly speaking, although it deployed Xilinx FPGAs and was essential
in prototyping ASICs, the Quickturn RPM was the first commercial
hardware emulator. From that point, advanced hardware emulator and
FPGA-based prototyping platforms developed, on divergent paths for
different use cases.

Hardware emulators are automatic, meant for big projects and broader
application on more than one design. A user need not know details of
the logic implementation, or how interconnects are organized. An
arbitrary netlist for an ASIC is loaded, chopped into many smaller
pieces, and spread out across many partitions – in the beginning,
implemented with tens or hundreds of FPGAs.

These partitions are subject to a relationship known as Rent’s Rule,
describing a necessary ratio of logic gates to interconnect pins.
Paradoxically, as FPGA logic capacities improved, pin counts fell
behind and Rentian interconnect limitations worsened, requiring even
more FPGAs to accommodate large netlists. Eventually, emulator
providers moved from FPGAs to ASIC-based designs. The price of
tossing more hardware at the problem is steep, however: today’s high
performance hardware emulator can cost over $1M.

Prototypes are more specific, often configured and tuned for one
project. Assuming adequate logic capacity and interconnect pins, a
design can be synthesized for a single FPGA target, or perhaps
partitioned across a handful of FPGAs with optimized interconnect.
Rent’s Rule becomes less applicable for a design of manageable size.
This is the basic premise of FPGA-based prototyping, which becomes
more and more attractive as FPGA logic capacities improve. 14

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

11

Image I-5: FPGA gates versus pin count, courtesy Cadence

What really makes the case for FPGA-based prototyping is not a change
in FPGAs, however, but changes in system design practices and
objectives. The type of design starts typical in the industry evolved
dramatically, looking less often like an enormous Intel microprocessor.
System-on-chips, microcontrollers, application-specific standard
product (ASSPs), and other designs take advantage of a growing field of
IP for customized implementations.

Reuse and integration is now paramount. Using FPGA-based
prototyping, stand-alone verification of individual IP blocks is cost-
effective. Third-party IP, existing internally designed IP blocks, and
new internal development can then be combined, with partitioning and
test artifacts reused to aid in the process.

Design exploration is feasible, especially for software teams that can
afford to place FPGA-based prototyping platforms on desks. What-if
scenarios run at IP-block level can explore software tradeoffs or minor
hardware architectural tradeoffs, not just functional fixes. These results
can be rolled up quickly to the full-up design, perhaps resulting a
critical product enhancement pre-silicon.

More FPGA-based prototyping platforms are integrating actual I/O
hardware, usually with a mezzanine-based approach, instead of

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

12

emulating I/O with a rate-adapter of some type. This is an important
factor for complex interface and protocol verification. It can also be a
deciding factor in safety-critical system evaluation, where validation
using actual hardware is essential.

At the high end, FPGA-based prototyping is scaling up. Platform-aware
synthesis is improving partitioning across multiple FPGAs, allowing
larger ASIC designs to be tackled. Cloud-based technology is
connecting platforms and designers via networks. Debug visibility is
increasing, with approaches including deep-trace capture and
automatic probe insertion. Integration with host-based simulation and
graphical analysis tools is also improving steadily.

The inescapable conclusion is if a chip project is to “start”, it had better
finish with robust silicon quickly. New applications, particularly the
Internet of Things, may reverse a trend of declining ASIC starts over
the last decade. Design starts are likely to be smaller and more
frequent, with highly specialized parts targeting niches. Advanced
requirements in power management, wireless connectivity, and
security are calling for more intense verification efforts.

FPGA-based prototyping, as we shall see shortly, is rising to these
challenges for a new era of chip design.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

13

NOTES

1 “1947 – Invention of the Point-Contact Transistor”, Computer History
Museum,
http://www.computerhistory.org/semiconductor/timeline/1947-
invention.html
2 “1958 – All semiconductor ‘Solid Circuit’ is demonstrated”, Computer
History Museum,
http://www.computerhistory.org/semiconductor/timeline/1958-
Miniaturized.html
3 “1960 – First Planar Integrated Circuit is Fabricated”, Computer
History Museum,
http://www.computerhistory.org/semiconductor/timeline/1960-
FirstIC.html
4 “1963 – Standard Logic IC Families Introduced”, Computer History
Museum,
http://www.computerhistory.org/semiconductor/timeline/1963-
TTL.html
5 “Viterbi Decoding for Satellite and Space Communication”, Jerry
Heller and Irwin Jacobs, Linkabit Corporation, IEEE Transactions on
Communication Technology, October 1971, pp. 835-848,
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1090711
6 “The Story of the Intel 4004”, Intel,
http://www.intel.com/content/www/us/en/history/museum-story-of-
intel-4004.html
7 “In the Beginning”, Ron Wilson, Altera,
https://www.altera.com/solutions/technology/system-
design/articles/_2013/in-the-beginning.html
8 “’XILINX DEVELOPS NEW CLASS OF ASIC.’ Blast from the Past: A
press release from 30 Years ago, yesterday”, Steve Leibson, Xilinx,
November 3, 2015, https://forums.xilinx.com/t5/Xcell-Daily-
Blog/XILINX-DEVELOPS-NEW-CLASS-OF-ASIC-Blast-from-the-Past-
A-press/ba-p/663224
9 “A Brief History of ASIC, part I”, Paul McLellan, SemiWiki, August 21,
2012, https://www.semiwiki.com/forum/content/1587-brief-history-
asic-part-i.html
10 “Coping with the Complexity of Microprocessor Design at Intel – A
CAD History”, Gelsinger et al, Intel, IEEE Solid-State Circuits Magazine,
June 2010,

http://www.computerhistory.org/semiconductor/timeline/1947-invention.html
http://www.computerhistory.org/semiconductor/timeline/1947-invention.html
http://www.computerhistory.org/semiconductor/timeline/1958-Miniaturized.html
http://www.computerhistory.org/semiconductor/timeline/1958-Miniaturized.html
http://www.computerhistory.org/semiconductor/timeline/1960-FirstIC.html
http://www.computerhistory.org/semiconductor/timeline/1960-FirstIC.html
http://www.computerhistory.org/semiconductor/timeline/1963-TTL.html
http://www.computerhistory.org/semiconductor/timeline/1963-TTL.html
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1090711
http://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
http://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
https://www.altera.com/solutions/technology/system-design/articles/_2013/in-the-beginning.html
https://www.altera.com/solutions/technology/system-design/articles/_2013/in-the-beginning.html
https://forums.xilinx.com/t5/Xcell-Daily-Blog/XILINX-DEVELOPS-NEW-CLASS-OF-ASIC-Blast-from-the-Past-A-press/ba-p/663224
https://forums.xilinx.com/t5/Xcell-Daily-Blog/XILINX-DEVELOPS-NEW-CLASS-OF-ASIC-Blast-from-the-Past-A-press/ba-p/663224
https://forums.xilinx.com/t5/Xcell-Daily-Blog/XILINX-DEVELOPS-NEW-CLASS-OF-ASIC-Blast-from-the-Past-A-press/ba-p/663224
https://www.semiwiki.com/forum/content/1587-brief-history-asic-part-i.html
https://www.semiwiki.com/forum/content/1587-brief-history-asic-part-i.html

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

14

http://webee.technion.ac.il/people/kolodny/ftp/IntelCADPaperFinal2.
pdf
11 “A Reprogrammable Gate Array and Applications”, Stephen
Trimberger, Xilinx, Proceedings of the IEEE, Vol. 81 No. 7, July 1993,
http://arantxa.ii.uam.es/~die/[Lectura%20FPGA%20Architecture]%20
A%20reprogrammable%20gate%20array%20-Trimberger.pdf
12 “Inside Intel”, Robert Hof, BusinessWeek, June 1, 1992,
http://www.businessweek.com/1989-94/pre88/b326855.htm
13 “Pre-Silicon Validation of Pentium CPU”, Koe et al, Intel, Hot Chips 5,
August 10, 1993, http://www.hotchips.org/archives/1990s/hc05/
14 “Logic Emulation and Prototyping: It’s the Interconnect (Rent
Rules)”, Mike Butts, NVIDIA, RAMP at Stanford, August 2010,
http://ramp.eecs.berkeley.edu/Publications/RAMP2010_MButts20Aug
%20(Slides,%208-25-2010).pptx

http://webee.technion.ac.il/people/kolodny/ftp/IntelCADPaperFinal2.pdf
http://webee.technion.ac.il/people/kolodny/ftp/IntelCADPaperFinal2.pdf
http://arantxa.ii.uam.es/%7Edie/%5bLectura%20FPGA%20Architecture%5d%20A%20reprogrammable%20gate%20array%20-Trimberger.pdf
http://arantxa.ii.uam.es/%7Edie/%5bLectura%20FPGA%20Architecture%5d%20A%20reprogrammable%20gate%20array%20-Trimberger.pdf
http://www.businessweek.com/1989-94/pre88/b326855.htm
http://www.hotchips.org/archives/1990s/hc05/
http://ramp.eecs.berkeley.edu/Publications/RAMP2010_MButts20Aug%20(Slides,%208-25-2010).pptx
http://ramp.eecs.berkeley.edu/Publications/RAMP2010_MButts20Aug%20(Slides,%208-25-2010).pptx

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

15

Chapter 1: SoC Prototyping Becomes Imperative

Electronic design was changing in the mid-1980s. Brute force schematic
capture was being supplanted by logic synthesis from hardware
description language. Wire wrapping or stitching techniques for
prototyping were being rendered obsolete as denser, higher pin count
packages appeared. Printed circuit board technology was advancing
rapidly, hand in hand with microprocessors, more complex ASIC parts,
and new FPGA technology.

Competing to launch products on time meant creating chip designs
faster. While hardware emulation proved very useful in ASIC
verification, it was prohibitively expensive for smaller use cases.
Sometimes, students and engineers just wanted to tinker with a design
in a lab to prove a concept, or had only small production volumes in
mind. If a project could bear the moderate cost of an FPGA, it was an
ideal vehicle for experimentation. Two new use cases emerged for
FPGAs: reconfigurable computing, and rapid prototyping.

Programmable Logic in Labs
Reconfigurable computing was the holy grail for signal processing, an
ideal application for FPGAs with DSP-like primitives. An FPGA card
could be added as a co-processor to an engineering workstation, and its
logic architected to provide efficient data flow computational
capability. The same workstation and FPGAs could be reconfigured for
different applications quickly, especially if Xilinx SRAM-based FPGA
technology were used.

Prime examples of early reconfigurable computing platforms were
Splash 1 and Splash 2, originally created to perform DNA sequence
comparison. Created in 1988, Splash 1 was a VMEbus system with 32
Xilinx XC3090 FPGAs in a linear systolic array. While powerful, the
Splash 1 architecture quickly proved to be limited by the available
FPGA interconnect, typically in the range of 200 to 300 pins and
subject to clocking and delay variables.

Splash 2 began in 1991, upgrading to XC4010 FPGAs with a crossbar
interconnect. It allowed chaining of up to 16 array boards each with 16

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

16

processing FPGAs (with a 17th part controlling the crossbar), and added
an SBus adapter for easy connection to a Sun Microsystems
SPARCstation. 15

Image 1-1: Splash 2 block diagram

Interconnect in hardware emulators and reconfigurable systems was
becoming a hot topic. A new technology debuted in 1992, the Aptix
FPIC (field programmable interconnect chip). Aptix parts used similar
SRAM-based technology to provide around 1000 interconnect pins
sans logic, somewhat relaxing Rent’s Rule limitations and allowing

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

17

much more flexible configurations on a printed circuit board. FPICs
were expensive, however, due to their high pin count packages. 16

Academic researchers took these concepts in a new direction, scaling
down to run HDL chip designs of a few thousand gates in smaller
FPGA-based rapid prototype boards. The idea behind rapid prototyping
was software would run immediately with full fidelity to production
silicon – or not. If the project did not have access or could not afford to
fabricate a chip, a rapid prototype could still prove the validity of the
concept.

The first of these rapid prototyping boards appearing in 1990 was the
AnyBoard from North Carolina State University. It returned to a simple
linear array of five Xilinx XC3090s and soon added automated circuit
partitioning built on Xilinx place & route software. The partitioning
software understood interconnect pins, clock rates, and logic and I/O
constraints. Researchers compared gradient descent algorithms with a
multi-bin version of Kernighan and Lin graph partitioning, testing
designs of varying complexity. 17

Also in 1990, researchers at Stanford University created Protozone, a
single Xilinx FPGA on a PC add-in card for experimentation. Protozone
became a jumping-off point for other research projects in FPGA
programming, but as a degenerate single-part configuration it did little
to advance partitioning and routing science. However, it did spur
broader educational programs at both Altera and Xilinx to provide
simple, low-cost FPGA boards for prototyping. 18

From the University of California, Santa Cruz came the aptly named
BORG in 1992. Two Xilinx FPGAs contained logic, two more held
reconfigurable routing, and a fifth performed configuration and
interfacing to a PC host. Much of the research focused on the problem
of pin assignment using bipartite graphs and new algorithms for a two-
commodity flow solution. (In a bit of irony, the first BORG prototype
itself was wire wrapped.) BORG illustrated the complexity of
programmable interconnect between parts even with relatively small
FPGA packages. 19

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

18

Another single-chip Xilinx XC3030 implementation debuted in 1993,
the Generic Reusable Module (GERM) from Duke University.
Researchers were promoting rapid design and prove out of subsystems,
with concepts of VHDL design and IP reuse. Students were encouraged
to build realistic designs in smaller pieces, then reuse those concepts
for larger projects in subsequent courses that could still be completed
in a semester. 20

The growing popularity of the Aptix FPIC influenced the design of the
Transmogrifier-1 at the University of Toronto in 1994. It indirectly
scaled up the BORG concept, with four more powerful Xilinx XC4010
FPGAs interconnected by two FPICs, and a fifth FPGA providing the
interface to a SPARCstation. Researchers used the platform to speed
designs of three example projects: a Viterbi decoder, a memory
organizer that emulated various configurations, and a logarithmic
number system processor. Using SRAM blocks in the FPGAs allowed
algorithm optimization compared to full-custom chip designs (multi-
chip modules using FPGA dies), resulting in higher clock speeds and
other implementation insights that were fed back to future modules. 21

Image 1-2: Transmogrifier-1 block diagram

First Productization of Prototyping
These research projects were stimulating broader interest and
exploring critical issues in FPGA-based prototyping, but were far from
ready for prime time. Hardware emulation still had a significant head
start in commercialization.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

19

Aptix CEO Amr Mohsen reflected on the early business challenges with
the FPIC parts, saying they were “probably two to three years ahead”
and being asked by customers to move into complete, turnkey
hardware emulation. At the Design Automation Conference in June
1994, Aptix launched two products. Explorer ASIC targeted single-chip
emulation at 10 MHz using 21 Xilinx XC4000-class FPGAs and FPICs
for interconnect, with automatic partitioning software provided by
third party Software & Technologies. System Explorer MP3 provided
general-purpose 50 MHz system-level emulation with configurable
FPGA payloads and I/O, but lacking automatic partitioning tools.
Automation would be added later with the System Explorer MP4 family
in May 1996. 22, 23

Image 1-3: Aptix System Explorer MP4

IKOS Systems bought its way into the hardware emulation market by
acquiring Virtual Machine Works in May 1996. The VirtuaLogic SLI
hardware emulator was productized and released by late 1996 with a
basic 200K gate capacity upgradable to over 1M gates. VirtualWires
technology created at MIT provided synthesis for FPGAs, avoiding a
need to move toward ASICs as other vendors were doing. 24

Major EDA players then moved in and competition got a bit ugly.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

20

Meta Systems created the SimExpress emulator family in 1994, and
after shopping itself to both Quickturn and Mentor Graphics agreed to
a Mentor acquisition in May 1995. By early 1996, Quickturn and Mentor
Graphics were involved in suit and countersuit over technology (some
previously licensed to Quickturn in 1992), blocking sales of Meta
Systems emulation platforms in the US for several years.

Mentor Graphics then licensed emulation technology from Aptix and
promptly sued Quickturn again in 1998, unfortunately based on bogus
claims in an Aptix engineering notebook. In a bid to resolve the patent
issues, Mentor Graphics launched a hostile takeover for Quickturn in
early 1998. It drew the attention of Cadence Design Systems, who
raised the takeover offer to $253M and secured Quickturn by December
1998. Legal wrangling continued. 25

With the hardware emulation providers locked in expensive battles
over high end platforms, the door was open for lower cost solutions
from smaller providers. Gidel, based in Israel, converted its expertise in
FPGA-based reconfigurable computing to a commercial FPGA-based
ASIC prototyping board in 1998 featuring an Altera FPGA. Also in 1998
The Dini Group in the US took its ideas from ASIC design consulting
into its first commercial FPGA-based prototype board, the DN250k10
with six Xilinx XC4085 FPGAs. 26, 27

ASIC complexity in both gate and pin counts had overwhelmed most
FPGA implementations, even attempts with programmable
interconnect. HARDI Electronics AB, a small Swedish firm,
reinvestigated the problem and decided to route FPGA I/O to high
speed connectors leading off board. By insuring impedance and trace
length matching, external cabling could be used to complete
connections in the desired configuration. The result was the first
HARDI ASIC Prototyping System (HAPS) created in 2000, based on
the Xilinx Virtex FPGA. To get larger configurations, HARDI began
work on a board stacking scheme and bus interconnect – HapsTrak.

Fabless and Design Enablement
The third major change in the industry was the rise of ARM processor
core technology and a corresponding increase in foundry capability.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

21

Powered largely by the meteoric rise of the ARM7TDMI core
introduced in 1995, designers outside of the traditional semiconductor
companies were gaining confidence in their ability to create producible
chips, entirely fabless. 28

ARM understood that as their IP became more complex and foundries
became more diverse, they needed to foster tools and methodology
enabling their design customers to succeed. At first, ARM scaled via
consulting in efforts led by Warren East beginning in 1994. Next, ARM
introduced the Advanced Microcontroller Bus Architecture (AMBA) in
1997, seeking to standardize interconnect and make IP integration
easier.

Image 1-4: AMBA system and peripheral buses, courtesy ARM

Then, ARM cores became fully synthesizable. The impetus was an effort
at ASIC vendor LSI Logic who launched a CoreWare synthesizable
version of ARM7TDMI in late 1997. ARM soon responded with
standard synthesizable versions of its ARM7TDMI-S core and
ARM946E-S and ARM966E-S macrocells, opening choices for using
industry-standard EDA tools. By 2000, both TSMC and UMC had
joined the new ARM Foundry Program and taken “per use” licenses.

Also in 2000, ARM made a strategic equity investment in CoWare and
its IP models with an eye on providing more accurate simulations of
the processor core. While useful, simulation was slow and models
scarce, especially for many third-party peripheral IP blocks. Hardware
emulation tools were prohibitively expensive for third-party peripheral
block designers, often very small shops.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

22

However, a bigger opportunity was developing. An IP block could be
fully tested standalone, but when integrated into a larger system-on-
chip with other peripheral blocks, new issues would develop. Either
simulation would fail to uncover at-speed problems, or interaction
between blocks would expose conditions untested in the standalone
case.

The solution for affordable, faster, more complete testing of both IP
blocks and integrated SoC designs was becoming FPGA-based
prototyping. Both startups and larger EDA firms sought to capitalize on
the trend.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

23

NOTES

15 “Reconfigurable Computing”, Jeffrey M. Arnold, IDA Supercomputing
Research Center, published in New Horizons of Computational
Science: Proceedings of the International Symposium on
Supercomputing, Tokyo, Japan, September 1997, edited by Toshikazu
Ebisuzaki and Junichiro Makino, pp. 95-106.
16 “The Roles of FPGAs in Reprogrammable Systems”, Scott Hauck,
Northwestern University, published in Proceedings of the IEEE,
Volume 86 Issue 4, April 1998, pp. 615-638.
17 “Automatic circuit partitioning in the AnyBoard rapid prototyping
system”, Douglas A. Thomae and David E. Van den Bout, North
Carolina State University, Microprocessors and Microsystems, Volume
16 Issue 6, 1992, pp. 283-290.
18 “Chips on the Net: An FPGA prototyping platform”, M. J. Smith and
H. Fallside, University of Hawaii and Xilinx, published in Proceedings
of the 3rd European Workshop on Microelectronics Education, May
2000, pp. 151-154.
19 “BORG: A Reconfigurable Prototyping Board Using Field-
Programmable Gate Arrays”, Pak K. Chan, Martine D. F. Schlag, and
Marcelo Martin, University of California, Santa Cruz, published in
Proceedings of the 1st International ACM/SIGDA Workshop on Field-
Programmable Gate Arrays, 1992, pp. 47-51.
20 “FPGA Based Low Cost Generic Reusable Module for the Rapid
Prototyping of Subsystems”, Apostolos Dollas, Brent Ward, John D. S.
Babcock, Duke University, published in Lecture Notes in Computer
Science, Volume 849, 1994, pp. 259-270.
21 “The Transmogrifier: The University of Toronto Field-Programmable
System”, Galloway et al, University of Toronto, June 1994,
http://www.eecg.toronto.edu/~jayar/research/Transmogrifier1.pdf
22 “Aptix aims to be ‘system-emulation’ pioneer”, Richard Goering,
Techweb, CMP Publications, June 27, 1994, p. 33,
http://www.xsim.com/bib/papers.d/aptix.html
23 “Aptix expands System Explorer family of emulation tools”, Aptix
press release, May 20, 1996,
http://www.thefreelibrary.com/APTIX+EXPANDS+SYSTEM+EXPLORE
R+FAMILY+OF+SYSTEM+EMULATION+TOOLS-a018303369
24 “Logic Emulation for the Masses Arrives; IKOS prepares to roll out
production versions of its innovative VirtuaLogic SLI emulation

http://www.eecg.toronto.edu/%7Ejayar/research/Transmogrifier1.pdf
http://www.xsim.com/bib/papers.d/aptix.html
http://www.thefreelibrary.com/APTIX+EXPANDS+SYSTEM+EXPLORER+FAMILY+OF+SYSTEM+EMULATION+TOOLS-a018303369
http://www.thefreelibrary.com/APTIX+EXPANDS+SYSTEM+EXPLORER+FAMILY+OF+SYSTEM+EMULATION+TOOLS-a018303369

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

24

solution”, IKOS Systems press release, September 16, 1996,
http://www.thefreelibrary.com/Logic+Emulation+for+the+Masses+Arri
ves%3B+IKOS+prepares+to+roll+out...-a018675799
25 “Too much preoccupation with patents?”, Russ Arensman,
embedded.com, January 1, 2003,
http://www.embedded.com/print/4347248
26 Gidel web site, http://www.gidel.com/ASIC-prototyping/index.asp
27 The Dini Group corporate presentation,
http://www.dinigroup.com/files/FPGA-based-
Cluster%20computing_9-09-10-HPC.pdf
28 “Mobile Unleashed”, Daniel Nenni and Don Dingee, SemiWiki,
December 2015.

http://www.thefreelibrary.com/Logic+Emulation+for+the+Masses+Arrives%3B+IKOS+prepares+to+roll+out...-a018675799
http://www.thefreelibrary.com/Logic+Emulation+for+the+Masses+Arrives%3B+IKOS+prepares+to+roll+out...-a018675799
http://www.embedded.com/print/4347248
http://www.gidel.com/ASIC-prototyping/index.asp
http://www.dinigroup.com/files/FPGA-based-Cluster%20computing_9-09-10-HPC.pdf
http://www.dinigroup.com/files/FPGA-based-Cluster%20computing_9-09-10-HPC.pdf

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

25

Chapter 2: How S2C Stacked Up Success

Startups are often pure-plays focused on a particular technology. When
a new market opportunity appears, it is often startups who are able to
move in first. Expertise gained in a previous round of technology
development can propel a startup, with a new brand and strategy, from
obscurity into prominence.

FPGA-based prototyping systems presented just such an opportunity.
The groundswell in the IP ecosystem and the addition of foundry
players in Asia brought a new audience of SoC designers into the mix. A
wave of Asian firms, or Asian design centers for companies based in the
US and Europe, were among the first ones open to new ideas and new
EDA tools from a new innovator.

Making ESL Mean Something
Aptix had delivered outstanding FPGA interconnect technology, but as
its legal issues deepened, it lost focus and became unable to compete
for new business. By 2003 its key talent was defecting, ready to take the
lessons learned from the reconfigurable computing days elsewhere.

Three ex-Aptix principals, Thomas Huang, Mon-Ren Chene, and
Toshio Nakama pooled their own money to form S2C, Inc. – a creative
spin on “system to chip”. Based in San Jose, California, the vision for
S2C was helping accelerate time-to-success for SoC design companies.
To do that, S2C would need to build a new organization, and carefully
craft and document their intellectual property to avoid the quagmire
their previous engagement became mired in.

Focusing on the Chinese market as a major opportunity, S2C quickly
set up its first offshore research and development center in Shanghai in
2003. This not only provided a talent pool, but also offered a way to
connect and service customers based in Asia. Since the methodology
behind FPGA-based prototyping was fairly new, and design teams using
it were often working on small- or medium-sized projects, there would
be a fair amount of customer handholding required.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

26

S2C was essentially in stealth mode for nearly two years. One of the key
problems in making the leap from reconfigurable computing to FPGA-
based prototyping was the tools used with FPGAs and the IP that went
inside.

The buzzword making the rounds in EDA circles at the time was ESL:
electronic system-level design. The idea of ESL sounded great on paper,
bringing together approaches using high-level hardware descriptions
with hardware and software co-design strategies and adding virtual
prototyping and co-verification. (It was a lot of buzzwords inside
buzzwords.) EDA vendors were scrambling to unify their tool suites
and create a cohesive flow that shared design data and results.

FPGA tools were different, even foreign to most ASIC designers. For
many, although the benefits of prototyping were increasing, the extra
steps in becoming familiar with FPGA synthesis and debug were
troubling. Worse yet, FPGA IP blocks were usually tuned for FPGA
constructs. Steps to obtain logic and timing closure in FPGAs were
different from those in ASICs. Concerns over the fidelity of an FPGA-
based prototype were valid; if too much effort was required to resolve
differences when moving a design back into an ASIC flow, the time-to-
success gains from prototyping and exploration would be undone.

S2C’s first task was to develop a complete methodology – a set of tools
and IP that would not only make FPGA-based prototyping more
productive, but would smooth out the transition of a design from the
prototyping stage back into an EDA flow bound for an SoC.

TAI IP and “Prototype Ready”
In February 2005, S2C filed its patent for a “Scalable reconfigurable
prototyping system and method.” It described a system for automating
validation tasks for SoCs, with a user workstation, data communication
interface, and an emulation platform with multiple FPGAs plus
interfaces to a real-world target system. Its key observation was that
SoC designs were composed of multiple IP blocks, and those could be
synthesized from HDL into FPGAs, but needed some standardized
method to communicate with a host for download, debug, and
modification. 29

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

27

A few months later, they gave a name to the concept: Testable,
Analyzable, and Integratable IP, or TAI IP for short. A TAI IP block
contained dynamically reconfigurable tag memory, multiplexers,
buffers and latches, and could be added to user IP blocks to allow
control and incremental run-time configuration. Both debug and
performance analysis modes existed; for instance, a bandwidth analyzer
mode could gather information on throughput and latency. 30

This allowed S2C to deliver a cohesive design flow. A top-level design
including imported modules from HDL or netlists could be
synthesized, assigned symbols, partitioned into FPGAs, automatically
instrumented with TAI IP blocks, and placed and routed. Software
development could begin as soon as a prototype was ready, including
using the SoC prototype to communicate with a target interface at
hardware speeds – a nearly impossible task using only host-based
simulation.

In May 2005, S2C announced its first product at the Design
Automation Conference (DAC). The IP Porter system supported SoC
designs of up to 3M gates with four Xilinx XC2VP100 FPGAs. It
connected to a host via USB 2.0, where the TAI Compiler and
Navigator software packages ran. TAI Compiler automated creation of
TAI IP modules and libraries, including encryption if desired. Navigator
provided links to System C models and SCE-MI transactors connecting
event-driven simulation tools on the host with points in the FPGA-
based prototype.

Beta customers working with the product estimated their design time
was cut by 3 to 6 months. Productivity gains came not so much from
the initial setup of a prototype, but from a significant reduction in
iteration time as debug and analysis uncovered changes and
improvements. TAI IP enabled reconfiguring only the part of the design
where changes were made, speeding up the synthesis.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

28

Image 2-1: S2C IP Porter

Second-generation product beginning in 2006 moved to a new
hardware arrangement with high-performance Mictor connectors
allowing stacking of TAI logic module boards each with one or two
Xilinx Virtex-4 FPGAs. These connectors also enabled direct addition of
a library of expansion modules for memory, video and audio interfaces,
logic analyzer breakouts, and more, and allowed customer I/O designs
to be added easily.

2007 brought new IP partners, most notably processor core vendors
Tensilica and CAST. Work continued on SCE-MI with Hitachi and
other co-modeling projects with Asian customers, and a new office
opened in Shenzhen to support the growing SoC community in China.
In 2008, the TAI IP patent was granted in the US, and the TAI logic
modules received the latest Xilinx Virtex-5 FPGAs. Host software was
unified under the TAI Player name, with expanded logic analysis and
SCE-MI co-modeling. 31

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

29

By 2010, the fourth generation logic module based on dual Xilinx
Virtex-6 FPGAs appeared, along with a first – support for Altera FPGAs
with a dual Stratix IV Logic module, unique among the major FPGA-
based prototyping vendors. Design sizes accommodated on a single
module topped 15M gates, and module stacking pushed that higher.
More modules were added to the accessory library, including PCIe and
Gigabit Ethernet. Larger Altera-based systems released in 2011, with the
Quad S4 TAI Logic Module carrying four Altera Stratix IV 820 FPGAs
upping the capacity to 32.8M gates. 32, 33, 34

Image 2-2: S2C Quad S4 TAI Logic Module

To handle larger designs and faster verification, S2C also announced a
x4 PCIe Gen2 host interface board in 2011, and continued expansion of
its Prototype Ready accessory library. Xilinx Virtex-7 logic modules
released in 2012, along with ARM1176 and ARM926 Global Unichip
Corporation (GUC) Test Chip modules with external AMBA interfacing
for ARM designers to quickly incorporate merchant cores. 35, 36, 37

2013 saw the addition of more logic modules based on the Xilinx Zynq-
7000 All Programmable SoC with its integrated dual ARM Cortex-A9
cores. With up to four Zynq-7000 parts on one board, plus a high-
frequency LVDS pin multiplexing scheme, a single board could handle
up to 80M gates. New Prototype Ready modules added HDMI, GTX
transceiver interfacing, and other support around the Zynq-7000.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

30

ProtoBridge AXI capability came in 2014, providing native AXI
transactors suitable for advanced ARM designs and other IP adopting
AXI. 38, 39

Image 2-3: S2C ProtoBridge software environment

Taking on the Cloud
S2C continues its expansion under founders Nakama, now CEO, and
Chene, now Chairman and CTO. In 2014, new offices opened in Japan
and Korea, and a round of $4.6M Series C financing reinforces R&D and
sales and support channels development. Keeping pace with the Xilinx
roadmap for larger and faster parts, including the latest Virtex
UltraScale 440 FPGA, is just part of the strategy.

In April 2015, S2C announced a new brand: Prodigy. In many ways, the
story remains the same under a new name. Prodigy unifies the offering
of FPGA logic modules, Player Pro partitioning and configuration
software, ProtoBridge system-level simulation link tool, and the library
of Prototype Ready modules now numbering over 80 designs. In other
ways, Prodigy marks a new beginning. 40

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

31

Image 2-4: S2C Prodigy Complete Prototyping

For DAC 2015 in June, ten years after introducing its first product to
the public, S2C unveiled a new concept in scalability. Prodigy Cloud
Cube introduces a capacity breakthrough providing up to 1.4B gates in
a single chassis with up to 32 FPGAs. Simultaneous access for up to 16
engineers is supported, with remote access via Ethernet. Configuration
of the platform itself is automatic, with detection of installed logic
modules, cabling, and daughter cards, along with self-tests to isolate
issues. 41

S2C’s focus on Asia continues to increase, with a new R&D and
manufacturing center in Taiwan opened in October 2015. With energy
in mobile shifting from flagship smartphones into mid-range devices,
and new ideas appearing daily in wearables and the IoT, more designs
are starting with a wider variety of hardware IP and software support.
Asia is at the epicenter of many of these changes, increasing the need
for a distributed FPGA-prototyping solution made for design teams and
IP providers to collaborate from wherever they happen to be based.

Scalability also remains important. Single FPGA logic module solutions
are now large enough to hold many designs. The ability to use the same

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

32

tool set and FPGA-based prototyping methodology from the latest
Single KU115 Prodigy Logic Module introduced in January 2016 all the
way up to the Prodigy Cloud Cube is essential for SoC design team
productivity. 42

Image 2-5: S2C Cloud Cube 32

Now serving over 200 customers, S2C has delivered innovation by
staying close to its users. Extra handholding required in the first
generation has now turned into a competitive advantage in later
generations. By looking closely at each step in the SoC design phase,
enhancements in S2C FPGA-based prototyping tools are discovered,
removing friction and increasing capability and efficiency.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

33

NOTES

29 “Scalable reconfigurable prototyping system and method”, US Patent
7353162, April 1, 2008, http://www.google.com/patents/US7353162
30 “S2C delivers breakthrough FPGA-based ESL Design with TAI IP”,
Design & Reuse, May 31, 2005, http://www.design-
reuse.com/news/10519/s2c-breakthrough-fpga-esl-design-tai-ip.html
31 “A New Era for SoC Prototyping Flow: From System Architecture Plan
to Verification”, S2C presentation by Mon-Ren Chene, January 15,
2009,
http://www.digitimes.com.tw/tw/B2B/Seminar/Service/download/0519
801150/DTF_980115_Track1_04.pdf
32 “S2C Announces 4th Generation Rapid SoC Prototyping Solution”,
S2C press release, June 14, 2010,
http://www.s2cinc.com/company/press-releases/2010/s2c-announces-
4th-generation-rapid-soc-prototyping-solution
33 “S2C Announces Virtex-6 Based 4th Generation Rapid SoC
Prototyping Solution”, S2C press release, August 30, 2010,
http://www.s2cinc.com/company/press-releases/2010/s2c-announces-
virtex-6-based-4th-generation-rapid-soc-prototyping-solution
34 “S2C Releases 32.8 Million Gate SoC/ASIC Prototyping System”, S2C
press release, April 21, 2011, http://www.s2cinc.com/company/press-
releases/2011/s2c-releases-32.8-million-gate-socasic-prototyping-
system
35 “S2C Announces a Breakthrough Verification Module”, S2C press
release, June 6, 2011, http://www.s2cinc.com/company/press-
releases/2011/s2c-announces-a-breakthrough-verification-module
36 “S2C Releases Dual Virtex-7 2000T FPGA Rapid SoC Prototyping
Hardware”, S2C press release, May 31, 2012,
http://www.s2cinc.com/company/press-releases/2012/s2c-releases-
dual-virtex-7-2000t-fpga-rapid-soc-prototyping-hardware
37 “S2C Releases New Prototype Ready ARM11 and ARM9 Modules for
FPGA-Based Prototypes”, S2C press release, June 1, 2012,
http://www.s2cinc.com/company/press-releases/2012/s2c-releases-
new-prototype-ready%E2%84%A2-arm11-and-arm9-modules-for-fpga-
based-prototypes
38 “New Quad Virtex-7 2000T 3D IC Rapid ASIC Prototyping Platform
from S2C Optimized for Design Partitioning”, S2C press release,
January 21, 2013, http://www.s2cinc.com/company/press-

http://www.google.com/patents/US7353162
http://www.design-reuse.com/news/10519/s2c-breakthrough-fpga-esl-design-tai-ip.html
http://www.design-reuse.com/news/10519/s2c-breakthrough-fpga-esl-design-tai-ip.html
http://www.digitimes.com.tw/tw/B2B/Seminar/Service/download/0519801150/DTF_980115_Track1_04.pdf
http://www.digitimes.com.tw/tw/B2B/Seminar/Service/download/0519801150/DTF_980115_Track1_04.pdf
http://www.s2cinc.com/company/press-releases/2010/s2c-announces-4th-generation-rapid-soc-prototyping-solution
http://www.s2cinc.com/company/press-releases/2010/s2c-announces-4th-generation-rapid-soc-prototyping-solution
http://www.s2cinc.com/company/press-releases/2010/s2c-announces-virtex-6-based-4th-generation-rapid-soc-prototyping-solution
http://www.s2cinc.com/company/press-releases/2010/s2c-announces-virtex-6-based-4th-generation-rapid-soc-prototyping-solution
http://www.s2cinc.com/company/press-releases/2011/s2c-releases-32.8-million-gate-socasic-prototyping-system
http://www.s2cinc.com/company/press-releases/2011/s2c-releases-32.8-million-gate-socasic-prototyping-system
http://www.s2cinc.com/company/press-releases/2011/s2c-releases-32.8-million-gate-socasic-prototyping-system
http://www.s2cinc.com/company/press-releases/2011/s2c-announces-a-breakthrough-verification-module
http://www.s2cinc.com/company/press-releases/2011/s2c-announces-a-breakthrough-verification-module
http://www.s2cinc.com/company/press-releases/2012/s2c-releases-dual-virtex-7-2000t-fpga-rapid-soc-prototyping-hardware
http://www.s2cinc.com/company/press-releases/2012/s2c-releases-dual-virtex-7-2000t-fpga-rapid-soc-prototyping-hardware
http://www.s2cinc.com/company/press-releases/2012/s2c-releases-new-prototype-ready%E2%84%A2-arm11-and-arm9-modules-for-fpga-based-prototypes
http://www.s2cinc.com/company/press-releases/2012/s2c-releases-new-prototype-ready%E2%84%A2-arm11-and-arm9-modules-for-fpga-based-prototypes
http://www.s2cinc.com/company/press-releases/2012/s2c-releases-new-prototype-ready%E2%84%A2-arm11-and-arm9-modules-for-fpga-based-prototypes
http://www.s2cinc.com/company/press-releases/2013/new-quad-virtex-7-2000t-3d-ic-rapid-asic-prototyping-platform-from-s2c-optimized-for-design-partitioning

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

34

releases/2013/new-quad-virtex-7-2000t-3d-ic-rapid-asic-prototyping-
platform-from-s2c-optimized-for-design-partitioning
39 “S2C ProtoBridge AXI Expands FPGA-Based Prototype Usage”, S2C
press release, June 30, 2014, http://www.s2cinc.com/company/press-
releases/2014/s2c-protobridge%E2%84%A2-axi-expands-fpga-based-
prototype-usage
40 “S2C Sets New Standards for FPGA-Based Prototyping with Prodigy
Complete Prototyping Platform”, S2C press release, April 21, 2015,
http://www.s2cinc.com/company/press-releases/2015/s2c-sets-new-
standards-for-fpga-based-prototyping-with-prodigy-complete-
prototyping-platform
41 “S2C Prodigy Cloud Cube Enables FPGA Prototyping of 1 Billion Gate
Designs”, S2C press release, May 26, 2015,
http://www.s2cinc.com/company/press-releases/2015/s2c-
prodigy%E2%84%A2-cloud-cube%E2%84%A2-enables-fpga-
prototyping-of-1-billion-gates-designs
42 “S2C Expands Kintex UltraScale Prototyping Solutions for Consumer-
based IoT and Other Small to Medium Sized Designs”, S2C press
release, January 11, 2016, http://www.s2cinc.com/company/press-
releases/20161/s2c-expands-kintex-ultrascale-prototyping-solutions-
for-consumer-based-iot-and-other-small-to-medium-sized-designs

http://www.s2cinc.com/company/press-releases/2013/new-quad-virtex-7-2000t-3d-ic-rapid-asic-prototyping-platform-from-s2c-optimized-for-design-partitioning
http://www.s2cinc.com/company/press-releases/2013/new-quad-virtex-7-2000t-3d-ic-rapid-asic-prototyping-platform-from-s2c-optimized-for-design-partitioning
http://www.s2cinc.com/company/press-releases/2014/s2c-protobridge%E2%84%A2-axi-expands-fpga-based-prototype-usage
http://www.s2cinc.com/company/press-releases/2014/s2c-protobridge%E2%84%A2-axi-expands-fpga-based-prototype-usage
http://www.s2cinc.com/company/press-releases/2014/s2c-protobridge%E2%84%A2-axi-expands-fpga-based-prototype-usage
http://www.s2cinc.com/company/press-releases/2015/s2c-sets-new-standards-for-fpga-based-prototyping-with-prodigy-complete-prototyping-platform
http://www.s2cinc.com/company/press-releases/2015/s2c-sets-new-standards-for-fpga-based-prototyping-with-prodigy-complete-prototyping-platform
http://www.s2cinc.com/company/press-releases/2015/s2c-sets-new-standards-for-fpga-based-prototyping-with-prodigy-complete-prototyping-platform
http://www.s2cinc.com/company/press-releases/2015/s2c-prodigy%E2%84%A2-cloud-cube%E2%84%A2-enables-fpga-prototyping-of-1-billion-gates-designs
http://www.s2cinc.com/company/press-releases/2015/s2c-prodigy%E2%84%A2-cloud-cube%E2%84%A2-enables-fpga-prototyping-of-1-billion-gates-designs
http://www.s2cinc.com/company/press-releases/2015/s2c-prodigy%E2%84%A2-cloud-cube%E2%84%A2-enables-fpga-prototyping-of-1-billion-gates-designs
http://www.s2cinc.com/company/press-releases/20161/s2c-expands-kintex-ultrascale-prototyping-solutions-for-consumer-based-iot-and-other-small-to-medium-sized-designs
http://www.s2cinc.com/company/press-releases/20161/s2c-expands-kintex-ultrascale-prototyping-solutions-for-consumer-based-iot-and-other-small-to-medium-sized-designs
http://www.s2cinc.com/company/press-releases/20161/s2c-expands-kintex-ultrascale-prototyping-solutions-for-consumer-based-iot-and-other-small-to-medium-sized-designs

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

35

Chapter 3: Big EDA Moves In

Larger EDA firms are constantly hunting for other product lines to fill
out their portfolios. With ASIC and SoC starts accelerating, and smaller
firms becoming successful with FPGA-based prototyping technology,
the large firms started seeing a gap in their offering. The trick in a large
firm acquiring a small firm is to make those focused tools fit in the
bigger picture.

In the case of FPGA-based prototyping, first came an acquisition of one
of its pioneers by another FPGA tools vendor, which was then in turn
swallowed up by a large EDA firm. Those product lines were rebranded,
then expanded. When a comprehensive strategy for FPGA-based
prototyping systems was published, it drew an immediate a response
from a major competitor. As the need grows, competition is heating up.

A Laurel and HARDI Handshake
In 1987, the IEEE ratified the initial version of its standard IEEE 1076-
1987, VHSIC Hardware Description Language. EDA firms rushed to
embrace VHDL technology, both to satisfy its major backer – the US
Department of Defense and in particular the US Air Force – and to
capture the benefits of a high-level language for design and simulation
of ASICs. 43

Consultants in VHDL instantly sprang up. One of those firms was
HARDI Electronics AB, launched shortly after the original release of the
IEEE standard in 1987. HARDI quickly produced its first all-VHDL
design within a few months. They went on to develop extensive
expertise, publishing its VHDL Handbook in 1997 reflecting the
updated VHDL ’93 version of the standard. 44

As VHDL usage grew, so did the size of ASIC designs performed using
it. Simulation, though effective, was falling behind in terms of
providing enough speed to run the necessary verification tests on a
larger ASIC. Moving the verification tasks into hardware became the
path forward.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

36

In 2000, HARDI took the next logical step, creating the HARDI ASIC
Prototyping System. For several years, the system then just known as
HAPS was used in consulting activity for ASIC customer engagements.
HARDI coordinated closely with both Xilinx and a relatively new firm
formed in 1994, Synplicity, for FPGA synthesis and debug technology
including Synplicity’s Certify and Identify.

Demand for the HAPS platform rose over the next several years to the
point where HARDI began more aggressive external marketing,
launching version 2.1 of HAPS (soon to be rebranded as HAPS-10) at
the Design Automation and Test in Europe show in March 2003. HAPS
2.1 held up to four Xilinx Virtex-II 8000 FPGAs providing a total of up
to 8M gate capacity running at up to 200 MHz. 45

Image 3-1: HARDI Electronics AB HAPS-FPGA_2x3

HARDI launched its product in the US at the Design Automation
Conference in June 2003, and soon found a major customer in Texas
Instruments. A low end version, the single FPGA HAPS-FPGA_2x3
accommodating up to 1M gates, introduced the idea of stackable

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

37

prototyping modules – with an early version of the HapsTrak
interconnect – for scalable capacity and expansion. HAPS-FPGA_2x3
also had 120 low voltage differential signaling (LVDS) pairs for high-
speed I/O. 46

The second-generation HAPS-20 debuted in December 2004 with a
quad Xilinx Virtex-II Pro configuration, again stackable via HapsTrak.
It focused on I/O speed, providing 80 multi-gigabit serial links and
1600 LVDS pairs. The Virtex-II Pro FPGAs also each carried two IBM
PowerPC RISC processor cores for real-time software. User I/O was
divided into three voltage regions so separate voltages could be used
simultaneously. HAPS-20 added built-in self-test capability to assure
users of system integrity. 47

Xilinx Virtex-4 parts appeared on the third-generation HAPS-34 at the
ARM Developers Conference in October 2005, a sign that adoption of
FPGA-based prototyping among SoC designers was accelerating. HAPS-
34 delivered quad FPGAs with 9 I/O voltage regions. Smaller versions
quickly appeared, with the single HAPS-31 and the dual HAPS-32 added
in March 2006, all based on HapsTrak for stacking “like LEGO™
blocks” as the HARDI PR team put it. 48, 49, 50

Verification is Very Valuable
For the fourth generation, HARDI made a break with their logical
nomenclature, instead skipping to the HAPS-50 series with an
introduction in April 2007. The HAPS-52 featured a pair of Xilinx
Virtex-5 LX330 FPGAs. It was basically more of the same approach;
however, the quad board was not yet available, with only a reference to
more boards available in two months. 51

Almost two months to the day later came a much more surprising
announcement. The HAPS-50 news included a quote on the growing
partnership between HARDI and Synplicity, including the addition of
the new Total Recall debugging technology. The partnership cemented
on June 1, 2007 with the news that Synplicity was acquiring HARDI for
$24.2M in cash. 52

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

38

In turn, the new and improved Synplicity was suddenly on radar of one
of the big three EDA firms: Synopsys. In a slightly more complicated
transaction since Synplicity was publicly traded, Synopsys paid around
$227M to acquire Synplicity on March 20, 2008. HAPS was now a
Synopsys brand. 53

Synopsys took a breath to integrate HAPS into their development flow,
creating the Confirma Rapid Prototyping Platform including the
Synplicity suite and CHIPit technologies acquired from Pro Design in
2008. Syncing up with Xilinx for the Virtex-6 FPGA, Synopsys released
the HAPS-60 in April 2010 with a capacity of up to 18M gates. Synopsys
began using the HAPS environment for their own DesignWare IP, and
was able to pass through those artifacts to customers. They also added
support for the UMRbus, a high-speed host interface allowing co-
simulation with a HAPS platform. 54

Image 3-2: Synopsys HAPS-64

HAPS-70 appeared in November 2012 with the Xilinx Virtex-7 2000T
on nine model variants. An upgrade to HapsTrak 3 improved time-
domain pin multiplexing, and the Certify software became “HAPS-
aware” understanding partitioning and interconnect needs of the
hardware, resulting in a 10x productivity improvement. Deep Trace

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

39

Debug was added with a DRAM module to capture more real-time
signals with complex triggering. The UMRbus was also upgraded to
support up to 400 MB/sec transfers. 55

Capacity had long been an objective of HAPS, keeping pace with each
successive Xilinx FPGA release. The efforts with DesignWare IP and
customers showed how valuable smaller FPGA-prototyping platforms
could be, easy to set up for a software developer to work on code or for
an IP block developer to work on a single piece of IP prior to
integration. Streamlining the larger HAPS-70 platform resulted in the
HAPS Developer eXpress, or HAPS-DX, in December 2013. HAPS-DX
added an FMC interface for industry-standard daughterboards to add
I/O, and ProtoCompiler (formally released in April 2014, replacing the
short-lived Confirma tools) extending the flow and hardware awareness
in software tools. 56, 57

An Either-Or Response
In March 2011 after working in conjunction with Xilinx, Synopsys
released the FPGA-Based Prototyping Methodology Manual. Mentor
Graphics was (and is) still focused on hardware emulation technology.
The third member of the big three, Cadence, was also in hardware
emulation but needed some kind of response to the growing FPGA-
based prototyping movement.

Cadence had focused on design of FPGA boards themselves. After a
multi-year technology agreement proved the concept, Cadence decided
to acquire Taray and their FPGA design-in solution in March 2010.
Taray pioneered route-aware pin assignment synthesis, optimizing an
FPGA design together with the circuit board. This would form an aid
for designing an FPGA-based prototyping platform. 58

The formal response to Synopsys came in a Cadence white paper, “ASIC
Prototyping Simplified”, in April 2011. In it, they questioned the
approach of an off-the-shelf FPGA board to meet a wide variety of ASIC
prototyping needs. They suggested instead that customized FPGA
boards be built matching the needs of each project, of course using
Cadence tools. 59

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

40

It was a time-buying maneuver, just to get the industry talking. A
month later in May 2011, Cadence announced a strategy for “app-
driven” electronics within its bigger EDA360 vision going beyond just
co-verification. Part of that was a new Rapid Prototyping Platform, a
family of FPGA boards based on Altera Stratix IV devices. Cadence was
attempting to unify its tools and flows, so that a customer could choose
either hardware emulation or FPGA-based prototyping and migrate
back and forth as needed. 60

Image 3-3: Cadence Protium

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

41

A Bright Future Ahead
Cadence has a lot of ground to make up in FPGA-based prototyping,
but is making investments to try to do just that. In July 2014, they
introduced the second-generation Protium rapid prototyping platform,
curiously moving to Xilinx Virtex-7 2000T FPGAs matching the
competition and increasing capacity by 4x over the first-generation
product. The bring-up flow between Palladium hardware emulation
and Protium FPGA-based prototyping was further refined, with
productivity gains for customers using both environments. 61

Synopsys has stayed its course as one of the leaders in the field. Moving
into the Xilinx UltraScale generation, HAPS-80 launched in September
2015. Synopsys says this gets them to 1.6B ASIC gates with stacked
HAPS-80 modules, supported with an improved ProtoCompiler
handling the high-speed time-division multiplexing awareness. HAPS-
80 runs at 300 MHz for a single FPGA, 100 MHz with non-pin-
multiplexed multi-FPGAs, and 30 MHz with pin multiplexing.

Image 3-4: Synopsys HAPS-80

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

42

Combined with the efforts of S2C and others including Aldec, The Dini
Group, HyperSilicon, Pro Design Electronic GmbH, ReFLEX, and even
small prototyping systems from ARM, these developments have moved
the art of FPGA-based prototyping systems forward. Next, we’ll take a
look at where the technology is headed and how designers in segments
enjoying a renaissance of design starts can benefit from the ideas.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

43

NOTES

43 “1076-2008 – IEEE Standard VHDL Language Reference Manual”,
IEEE Standards Association,
https://standards.ieee.org/findstds/standard/1076-2008.html
44 “VHDL Handbook”, HARDI Electronics AB, 1997,
http://www.csee.umbc.edu/portal/help/VHDL/VHDL-Handbook.pdf
45 “HARDI Electronics Releases a Real-Time ASIC Prototyping Platform
at DATE”, HARDI Electronics AB press release, March 3, 2003,
http://www.businesswire.com/news/home/20030303005294/en/HAR
DI-Electronics-Releases-Real-Time-ASIC-Prototyping-Platform
46 “HARDI Electronics Releases a New Single-FPGA Module in the
HAPS Prototyping Family”, HARDI Electronics AB press release,
December 2, 2003,
http://www.businesswire.com/news/home/20031202005773/en/HAR
DI-Electronics-Releases-Single-FPGA-Module-HAPS-Prototyping
47 “HARDI Electronics Unveils Second Generation ASIC Prototyping
Platform”, HARDI Electronics AB press release, December 13, 2004,
http://www.businesswire.com/news/home/20041213005828/en/HARD
I-Electronics-Unveils-Generation-ASIC-Prototyping-Platform
48 “HARDI Electronics Unveils Industry's Most Advanced ASIC
Prototyping Platform at the ARM Developers Conference”, HARDI
Electronics AB press release, October 4, 2005,
http://www.businesswire.com/news/home/20051004005734/en/HAR
DI-Electronics-Unveils-Industrys-Advanced-ASIC-Prototyping
49 “How to Make an ASIC Prototype”, Lars-Eric Lundgren, HARDI
Electronics AB, Electronic Engineering Journal October 18, 2005,
http://www.eejournal.com/archives/articles/20051018_hardi/
50 “HARDI Electronics Announces Two New Motherboards in The
HAPS ASIC Prototyping Family at DATE 2006 (Booth A1)”, HARDI
Electronics AB press release, March 6, 2006,
http://www.businesswire.com/news/home/20060306005867/en/HAR
DI-Electronics-Announces-Motherboards-HAPS-ASIC-Prototyping
51 “HARDI announces FPGA-based HAPS-50 prototyping system”, Max
Maxfield, EETimes, April 4, 2007,
http://www.eetimes.com/document.asp?doc_id=1304157
52 “Synplicity Announces Agreement to Acquire HARDI Electronics
AB”, Synplicity press release, June 1, 2007,

https://standards.ieee.org/findstds/standard/1076-2008.html
http://www.csee.umbc.edu/portal/help/VHDL/VHDL-Handbook.pdf
http://www.businesswire.com/news/home/20030303005294/en/HARDI-Electronics-Releases-Real-Time-ASIC-Prototyping-Platform
http://www.businesswire.com/news/home/20030303005294/en/HARDI-Electronics-Releases-Real-Time-ASIC-Prototyping-Platform
http://www.businesswire.com/news/home/20031202005773/en/HARDI-Electronics-Releases-Single-FPGA-Module-HAPS-Prototyping
http://www.businesswire.com/news/home/20031202005773/en/HARDI-Electronics-Releases-Single-FPGA-Module-HAPS-Prototyping
http://www.businesswire.com/news/home/20041213005828/en/HARDI-Electronics-Unveils-Generation-ASIC-Prototyping-Platform
http://www.businesswire.com/news/home/20041213005828/en/HARDI-Electronics-Unveils-Generation-ASIC-Prototyping-Platform
http://www.businesswire.com/news/home/20051004005734/en/HARDI-Electronics-Unveils-Industrys-Advanced-ASIC-Prototyping
http://www.businesswire.com/news/home/20051004005734/en/HARDI-Electronics-Unveils-Industrys-Advanced-ASIC-Prototyping
http://www.eejournal.com/archives/articles/20051018_hardi/
http://www.businesswire.com/news/home/20060306005867/en/HARDI-Electronics-Announces-Motherboards-HAPS-ASIC-Prototyping
http://www.businesswire.com/news/home/20060306005867/en/HARDI-Electronics-Announces-Motherboards-HAPS-ASIC-Prototyping
http://www.eetimes.com/document.asp?doc_id=1304157

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

44

http://www.sec.gov/Archives/edgar/data/1027362/000119312507129831
/dex991.htm
53 “Synopsys to Acquire Synplicity, Inc.”, Synopsys press release, March
20, 2008, http://news.synopsys.com/index.php?item=122910
54 “Synopsys Introduces the HAPS-60 Series of Rapid Prototyping
Systems”, Synopsys press release, April 19, 2010,
http://news.synopsys.com/index.php?s=20295&item=123150
55 “New FPGA-Based Prototyping Solution Delivers Up to 3x System
Performance Improvement”, Synopsys press release, November 12,
2012, http://news.synopsys.com/index.php?s=20295&item=123433
56 “Synopsys Extends HAPS-70 Prototyping Family with New Solution
Optimized for IP and Subsystems”, Synopsys press release, December
16, 2013, http://news.synopsys.com/2013-12-16-Synopsys-Extends-
HAPS-70-Prototyping-Family-with-New-Solution-Optimized-for-IP-
and-Subsystems
57 “Synopsys' New ProtoCompiler Software Speeds Time to First
Prototype by Up to 3X”, Synopsys press release, April 23, 2014,
http://news.synopsys.com/2014-04-23-Synopsys-New-ProtoCompiler-
Software-Speeds-Time-to-First-Prototype-by-Up-to-3X
58 “Cadence Strengthens Leadership in FPGA Design-In Solutions with
Acquisition of Taray”, Cadence Design Systems press release, March 22,
2010,
http://www.cadence.com/cadence/newsroom/features/pages/feature.a
spx?xml=taray
59 “ASIC Prototyping Simplified”, Cadence Design Systems white paper,
April 2011,
http://www.cadence.com/rl/Resources/technical_papers/asic_prototyp
ing_tp.pdf
60 “Cadence Announces Breakthrough in System Development to Meet
Demands of ‘App-driven’ Electronics”, Cadence Design Systems press
release, May 3, 2011,
http://www.cadence.com/cadence/newsroom/press_releases/pages/pr.
aspx?xml=050311_sys_dev
61 “Cadence Announces Protium Rapid Prototyping Platform and
Expands System Development Suite Low-Power Verification”, Cadence
Design Systems press release, July 17, 2014,
http://www.cadence.com/cadence/newsroom/press_releases/Pages/pr.
aspx?xml=071714_Protium

http://www.sec.gov/Archives/edgar/data/1027362/000119312507129831/dex991.htm
http://www.sec.gov/Archives/edgar/data/1027362/000119312507129831/dex991.htm
http://news.synopsys.com/index.php?item=122910
http://news.synopsys.com/index.php?s=20295&item=123150
http://news.synopsys.com/index.php?s=20295&item=123433
http://news.synopsys.com/2013-12-16-Synopsys-Extends-HAPS-70-Prototyping-Family-with-New-Solution-Optimized-for-IP-and-Subsystems
http://news.synopsys.com/2013-12-16-Synopsys-Extends-HAPS-70-Prototyping-Family-with-New-Solution-Optimized-for-IP-and-Subsystems
http://news.synopsys.com/2013-12-16-Synopsys-Extends-HAPS-70-Prototyping-Family-with-New-Solution-Optimized-for-IP-and-Subsystems
http://news.synopsys.com/2014-04-23-Synopsys-New-ProtoCompiler-Software-Speeds-Time-to-First-Prototype-by-Up-to-3X
http://news.synopsys.com/2014-04-23-Synopsys-New-ProtoCompiler-Software-Speeds-Time-to-First-Prototype-by-Up-to-3X
http://www.cadence.com/cadence/newsroom/features/pages/feature.aspx?xml=taray
http://www.cadence.com/cadence/newsroom/features/pages/feature.aspx?xml=taray
http://www.cadence.com/rl/Resources/technical_papers/asic_prototyping_tp.pdf
http://www.cadence.com/rl/Resources/technical_papers/asic_prototyping_tp.pdf
http://www.cadence.com/cadence/newsroom/press_releases/pages/pr.aspx?xml=050311_sys_dev
http://www.cadence.com/cadence/newsroom/press_releases/pages/pr.aspx?xml=050311_sys_dev
http://www.cadence.com/cadence/newsroom/press_releases/Pages/pr.aspx?xml=071714_Protium
http://www.cadence.com/cadence/newsroom/press_releases/Pages/pr.aspx?xml=071714_Protium

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

45

Chapter 4: Strategies for Today and Tomorrow

SoC design has gone from relatively simple parts with a handful of IP
blocks to massive designs with around 150 IP blocks. Reuse is becoming
more important than ever, and integration is still where many designs
meet with challenges. With schedules under pressure and verification
and validation needs urgent, design teams are bringing a combination
of EDA tools to work.

As the cost of an SoC has escalated, the need for pre-silicon exploration
has increased. Tradeoffs in performance and power consumption are
part of nearly every design, especially mobile devices where recharging
factors heavily into user experience. Expanding software content must
be co-verified, with testing beginning long before production silicon is
available. Complex workloads present an opportunity for optimization
at the system level, if understood.

The State of FPGA-Based Prototyping
More and more teams are deploying FPGA-based prototyping tools
today. The technology has adapted as FPGAs themselves and system-
level hardware and software have improved, and use cases within the
SoC design flow have clarified.

Changes in the FPGA itself have been dramatic. Foundries quickly
discovered the uniform structures of FPGAs were ideal to prove out
new process nodes. For example, first-generation Xilinx UltraScale
FPGA parts use 20nm technology to pack something around 20 billion
transistors in a part. This has driven single FPGA equivalent gate
counts into tens of millions, and I/O pins well into the thousands. I/O
speed has also improved with advanced SERDES transceivers and
better memory interfaces. Clocking and power domains present far
more flexibility, allowing FPGAs to more accurately mimic ASIC-like
constructs.

Diverse I/O interfaces and greater numbers of I/O pins motivate FPGA-
based prototyping board designers. High-speed connectors provide
flexibility with signal integrity. Common physical interfaces are now

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

46

available on standardized daughter cards, and custom interfaces can be
designed and added rapidly using the same daughter card strategy –
either by the FPGA-based prototyping system vendor, or by the
customer. Debug interfaces have also improved, as have high speed
host interconnect ports for downloading and managing code.

Image 4-1: Xilinx UltraScale process improvements

FPGA-related software tools are also advancing. Logic synthesis tools
efficiently translate high-level design into FPGA primitives, and
understand nuances such as clock domain crossings and block RAM
resources. Partitioning tools now not only divvy up larger designs
across multiple FPGAs, they understand how the FPGA interconnect
works on the FPGA-based prototyping board and optimize accordingly,
reducing the need for manual partitioning. Debug tools provide
visibility without intrusiveness. Co-simulation tools allow use of
familiar simulation environments accelerated by execution in the FPGA
hardware.

Researchers are still considering the problem of multi-FPGA
interconnect, as I/O pins continue to be a limiting factor and
partitioning is challenging as inter-FPGA delays are still present. A new

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

47

thesis looks at the various approaches and considers a new congestion-
aware routing algorithm exploiting multi-point tracks and if flexible
cabling distribution eases the solution. The author confirms that given
automated flows, even complex multi-FPGA partitioning can be
reduced to a matter of several hours instead of days or weeks – a huge
productivity gain. It remains to be seen if the multi-point track
approach, essentially using an interim FPGA hop between two other
FPGA destinations, becomes a new best practice in automated
synthesis. 62

Image 4-2: Example of multi-point tracks in FPGA routing,
courtesy Qingshan Tang, Pierre and Marie Curie University (UPMC)

The biggest changes may be in the design workflow. Design teams are
often geographically distributed, and access to a lab-based system is
impractical. Teams are also working together; a software developer may
use a small FPGA-based prototyping system to exercise an IP block,
then pass those results on to another team working on the fully
integrated design on a larger FPGA-based prototype. Enterprise-class
solutions are emerging, leveraging network connectivity and cloud
resources to connect and manage multiple FPGA-based platforms. This
reduces handoffs, improves scalability and reuse, and opens up access
across the globe 24/7 in a flexible, yet secure environment.

With benefits of FPGA-based prototyping rising, adoption is steadily
improving. The most recent 2014 data from Wilson Research Group
places 32% of small projects up to 5M gates, 45% of medium projects
up to 80M gates, and 28% of projects over 80M gates using FPGA-
based prototyping. In the small category, adoption outpaces hardware
emulation by nearly double, and in the medium category the two
approaches are nearly equal in use. In the large category, FPGA-based

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

48

prototyping adoption is accelerating as capacities increase and ease of
use improves, particularly where distributed teams and smaller IP
blocks tested and then rolled up for integration are involved. 63

Developing for ARM Architecture
Since ARM introduced its Cortex strategy, with A cores for application
processors, R cores for real-time processors, and M cores for
microcontrollers, designers have been able to choose
price/performance points – and migrate software between them. How
do designers, who are often doing co-validation of SoC designs with
production software, prototype with these cores?

Some teams elect to use ARM’s hard macro IP offering, with optimized
implementations of cores. ARM has a mixed prototyping solution with
their CoreTile Express and LogicTile Express products. CoreTile
Express versions are available for the Cortex-A5, Cortex-A7, Cortex-A9,
and Cortex-A15 MPCore processors, based on a dedicated chip with the
hardened core and test features. The LogicTile Express comes in
versions with a single Xilinx Vertex-5, dual Virtex-6, or single Virtex-7
FPGAs, allowing loose coupling of peripheral IP. 64

Others try to attack the challenge entirely in software. Cycle-accurate
and instruction-accurate models of ARM IP exist, which can be run in a
simulator testbench along with other IP. With growing designs come
growing simulation complexity, and with complexity comes drastic
increases in execution time or required compute resources. Simulation
supports test vectors well, but is not very good at supporting
production software testing – a large operating system can take
practically forever to boot in a simulated environment.

Full-scale hardware emulation has the advantage of accommodating
very large designs, but at substantial cost. ARM has increased its large
design prototyping efforts with the Juno SoC for ARMv8-A, betting on
enabling designers with a production software-ready environment with
a relatively inexpensive development board.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

49

Image 4-3: ARM Juno SoC Development Platform

However, as we have seen SoC design is rarely about just the processor
core; other IP must be integrated and verified. Without a complete pass
at the full chip design with the actual software, too much is left to
chance in committing to silicon. While useful, these other platforms do
not provide a cost-effective end-to-end solution for development and
debug with distributed teams. Exploration capability in a prototyping
environment is also extremely valuable, changing out design elements
in a search for better performance, power consumption, third-party IP
evaluation, or other tradeoffs.

The traditional knock on FPGA-based prototyping has been a lack of
capacity and the hazards of partitioning, which introduces uncertainty
and potential faults. With bigger FPGAs and synthesizable RTL
versions of ARM core IP, many of the ARM core offerings now fit in a

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

50

single FPGA without partitioning. Larger members of the ARM Cortex-
A core family have been successfully partitioned across several large
FPGAs without extensive effort and adverse timing effects, running at
speeds significantly higher than simulation but without the cost of full-
scale hardware emulation.

A hybrid solution has emerged in programmable SoCs, typified by the
Xilinx Zynq family. The Zynq UltraScale+ MPSoC has a quad-core ARM
Cortex-A53 with a dual-core ARM Cortex-R5 and an ARM Mali-400MP
GPU, plus a large complement of programmable logic and a full suite of
I/O. If that is a similar configuration to the payload of the SoC under
design, it may be extremely useful to jumpstart efforts and add
peripheral IP as needed. If not, mimicking the target SoC design may
be difficult. 65

True FPGA-based prototyping platforms offer a combination of
flexibility, allowing any ARM core plus peripheral IP payload, and
debug capability. Advanced FPGA synthesis tools provide platform-
aware partitioning, automating much of the process, and are able to
deal with RTL and packaged IP such as encrypted blocks. Debug
features such as deep trace and multi-FPGA visibility and correlation
speed the process of finding issues.

The latest FPGA-based prototyping technology adds co-simulation,
using a chip-level interconnect such as AXI to download and control
joint operations between a host-based simulator and the hardware-
based logic execution. This considerably increases the speed of a
traditional simulation and allows use of a variety of host-based
verification tools. Using co-simulation allows faster turnaround and
more extensive exploration of designs, with greater certainty in the
implementation running in hardware.

Integration rollup is also an advantage of scalable FPGA-based
prototyping systems. Smaller units can reside on the desk of a software
engineer or IP block designer, allowing dedicated and thorough
investigation. Larger units can support integration of multiple blocks or
the entire SoC design. With the same synthesis, debug, and
visualization tools, artifacts are reused from the lower level designs,

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

51

speeding testing of the integrated solution and shortening the time-to-
success.

Another consideration in ARM design is not all cores are stock. In
many cases, hardware IP is designed using an architectural license,
customized to fit specific needs. In these cases, FPGA-based
prototyping is ideal to quickly experiment and modify designs, which
may undergo many iterations. Turnaround time becomes very
important and is a large productivity advantage for FPGA-based
prototyping.

Adoption Among Major System Houses
Perhaps the most striking examples of the usefulness of FPGA-based
prototyping strategies are its use in flagship mobile and networking
SoC designs. These sophisticated design teams are pursuing massive
designs with a phalanx of EDA tools, customizing design flow to meet
specific needs.

Image 4-4: Apple A9 chip, courtesy AnandTech and iFixit

At Apple, where ARM-based SoC designs have been in progress even
before they signed an architectural license in 2008, highly optimized
chips are co-verified with iOS producing stunning designs for the
iPhone and iPad families. FPGA-based prototyping systems are used in

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

52

conjunction with many technologies, some purchased commercially
and some created in-house. A team of 30 engineers routinely use these
systems, performing hardware and software exploration and
integration test.

Samsung is a bit unique in that its distributed SoC teams work on
designs handed off to Samsung foundry facilities and used in Samsung
consumer electronics. When vertically integrated, passing along
verification artifacts can be extremely beneficial. They are a big user of
commercial FPGA-based prototyping platforms, including locally-
designed FPGA boards from Korean vendors. Again, the design flow is
highly customized, leveraging the flexibility of FPGA-based prototyping
platforms for rapid turnaround and support of many configurations.

Huawei is another example of vertical integration, with even more self-
designed FPGA platforms created for their networking infrastructure
operations. As Huawei has entered the merchant SoC business with
their HiSilicon brand, they have come under similar time-to-success
pressure as other merchant vendors. They are adding commercial
FPGA-prototyping systems in order to leverage more development
tools rather than designing them all internally.

Application Segments in Need
High volume SoC applications in mobile devices and consumer
electronics have been a proving ground for FPGA-based prototyping
strategies. As PC and mobile markets mature, where is the frontier for
SoC design? What new requirements make a strong case for use of
FPGA-based prototyping?

Software content is growing at a rapid rate, now exceeding hardware
effort in most projects. Co-verification is on the rise, where pre-silicon
efforts explore production software long before committing a chip to
production. Safety-critical needs are also rising, where both hardware
and software must be validated to stringent requirements. These
characteristics point toward three application segments, all on the rise.

Automotive electronics are undergoing a renaissance, after a period
where many vendors avoided the harsh environmental requirements.
Microcontroller content in cars has been increasing for decades, with

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

53

more points of control and interconnects such as CAN. Infotainment
presented an opportunity for in-dash multimedia elements, very similar
to those found in mobile SoCs.

Now, connectivity and intelligence are taking automotive electronics to
the next level. Advanced driver assistance systems (ADAS) are on a
rapid rise. Some estimates place as many as eight to ten cameras in
each vehicle soon, with sophisticated embedded vision processing.
Research in completely self-driving cars is also on the rise. New
developments combine faster processing, improved interconnect such
as one wire Ethernet, and cloud connectivity.

Modeling a car with its electromechanical systems is complex.
Accuracy and speed is paramount, and use of production software is
mandatory in achieving ISO 26262 requirements. Part of the
compliance testing calls for fault injection to analyze potential failure
modes – relatively easy with FPGA-based prototyping platforms and co-
simulation, far more difficult around actual silicon.

Distributed development teams are also the norm in automotive.
FPGA-based prototyping systems are often the only solution, providing
virtual hardware for many developers at several locations instead of
expensive production hardware. Using cloud technology, FPGA-based
systems can be interconnected and accessed remotely, avoiding
unnecessary duplication of platforms.

Another area getting a lot of attention is wearable technology. These
devices fall into several broad categories: fitness bands, smartwatches,
activity and health monitoring, fashion, vision-enhanced productivity,
and more. Compute power and sensors vary, as does connectivity.
Some devices are intended to be tethered to a smartphone, while
others have their own 3G or 4G modem.

Two common requirements exist across wearables: small size and
weight, and very low power consumption. In the Apple Watch, many
chips were packed into the S1 system-in-package (SiP), creating a
highly optimized form factor. Consumer adoption is showing
preference for wearable devices that operate for a week, not requiring
recharging at the end of every day of use.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

54

Using FPGA-based prototyping for wearables brings many benefits. In
the area of small size and weight, exploration into packaging options
can be performed, moving IP blocks and swapping pins until an
optimum system-level solution is obtained. Tradeoffs between
performance and power consumption can also be done, with
visualization allowing designers to see what is going on with fine
granularity and make changes in the design where necessary.

Finally, there is the Internet of Things, or IoT – not a single application
segment, but more of a collection of interconnected technologies into a
bigger idea. While not declared explicitly as safety-critical, many IoT
applications provide important control functions and collect and
process critical data that individuals and businesses are coming to rely
on. IoT devices have to work correctly, all the time, and must be secure;
in a word, these devices must be trusted.

Creating that trust is challenging. IoT design falls into three tiers: edge,
gateway, and infrastructure. Edge devices interface with sensors and
actuators, taking readings and interfacing with the physical world, and
most often connect wirelessly to a gateway. Incoming data is
aggregated and analyzed in gateways, then passed to an infrastructure
(often referred to as “the cloud”, but implementation can vary with use
cases) for further processing, storage, and presentation. Any weak link
in performance, power consumption, wireless signal integrity, security,
or other issues can cause a system-wide problem.

IoT applications will test the mettle of design teams. Rushing hardware
and software to market in order to declare “first” versus competition
may be counterproductive when flaws are uncovered. Business
customers in particular are proceeding very cautiously, asking for pilot
installations on a small scale before rolling out full-scale deployments.
SoC designers will need to customize, explore, test, and perhaps adapt
rapidly but carefully.

FPGA-based prototyping will prove crucial for IoT designs. Many of
these design starts, particularly for edge devices, will be small in terms
of gate counts, but may seem larger in terms of verification testing
needs. Expertise in wireless technology, security, power management,
and other disciplines will become a differentiator for SoC teams.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

55

Running more tests on a wider variety of IP blocks within limited
schedules calls for cost effective, flexible platforms that can handle any
configuration.

Many IoT-related specifications exist, and it is very possible designs
may be forced to respond mid-stream as new ones appear and others
fall away. Algorithms will also adapt as researchers provide new
breakthroughs. With the right FPGA-based prototyping tools, hardware
and software can be explored thoroughly against real-world use cases,
which will be better understood as more IoT deployments occur.

The overall theme in these applications is system-aware SoC designs
win. Rather than just implementing a set of functional requirements,
the new era of smart SoC design anticipates use cases and tests
hardware and software accordingly – pre-silicon.

Next, the “Implementing an FPGA Prototyping Methodology” Field
Guide authored by the teams at S2C looks at FPGA-based prototyping
from a practical viewpoint with tips on how to choose a platform,
addressing scalability, and implementing a design flow.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

56

NOTES

62 “Methodology of Multi-FPGA Prototyping Platform Generation”,
Qingshan Tang, Universit´e Pierre et Marie Curie - Paris, January 13,
2015, https://hal.inria.fr/tel-01256510/document
63 “Part 9: The 2014 Wilson Research Group Functional Verification
Study”, Harry Foster, July 19, 2015,
https://blogs.mentor.com/verificationhorizons/blog/2015/07/19/part-
9-the-2014-wilson-research-group-functional-verification-study/
64 “CoreTile Express”, ARM website,
https://www.arm.com/products/tools/development-boards/versatile-
express/coretile-express.php
65 “All Programmable Heterogeneous MPSoC”, Xilinx web site,
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-
mpsoc.html

https://hal.inria.fr/tel-01256510/document
https://blogs.mentor.com/verificationhorizons/blog/2015/07/19/part-9-the-2014-wilson-research-group-functional-verification-study/
https://blogs.mentor.com/verificationhorizons/blog/2015/07/19/part-9-the-2014-wilson-research-group-functional-verification-study/
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html

57

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

58

Implementing an
FPGA Prototyping Methodology

FIELD GUIDE

Authored by the team at

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

60

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

61

When Do You Need an FPGA-based Prototyping Solution?
We all know that complexities in design and shrinking time-to-market
windows are driving up design and verification costs. More and more,
engineers are turning to hardware platforms for their quest to verify
their designs on time. Hardware platforms such as FPGA prototyping
are growing in popularity due to their relative low expense and ability
to test system designs at speed versus simulation which is too slow and
often can’t provide an accurate assessment of design behavior. FPGA
prototyping has often been typecast as a solution used solely for small
designs late in the verification process just before the software
development stage, with concerns that the difficulties of employing
prototyping across multiple FPGAs have outweighed the cost and speed
benefits of implementation for large designs. Emulation has been the
choice for verifying large designs because of its capacity, but it too has
limitations.

The truth is that today’s FPGA-based prototyping advancements are
breaking that restrictive notion. Innovative hardware and the addition
of cutting-edge software have made it possible to realize the benefits of
FPGA prototyping not only for system validation and software
development, but also much earlier and throughout the design and
verification flow as well as for extremely large designs.

FPGA-based prototyping is well suited for even the largest designs.
FPGA capacity has increased exponentially to reach up to 44M ASIC
gates (per FPGA) and can fit up to a billion gates (by using an array of
FPGAs in a single system). These increases in capacity have not affected
FPGA prototyping speed and costs relative to emulation; it’s still much
faster and cheaper than emulation.

To figure out if FPGA-based prototyping is the optimal choice for your
design and verification flow, you should ask yourself these questions.

1) Is testing of my design in real-time critical to design
success?

To answer this question, you should analyze the importance
and complexities of your design’s functionality. As mentioned

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

62

earlier, simulation can only get you so far when dealing with
complex device behavior. Deep and accurate assessment can’t
be achieved simply through simulation no matter how many
regressions are done. Confidence in a design can often times
only be achieved through the ability to test it in real-time
scenarios especially for designs heavily dependent on timing
accuracy.

Many applications need to be tested in real time or close to real
time to assess the quality of the design. Examples of this are
Video and Audio applications. In addition, some designs
require real-world testing involving outside environments,
noise, or interfacing with 3rd party designs and infrastructures.

2) How many tests will you need to run and what is the
time window that needs to be achieved between testing
and implementation?

As your design stabilizes and matures, validating the software
components come into play. At this stage, emulation and
prototyping have distinct advantages. If you need to get your
model up and running quickly with only the need to run a few
tests, then emulation is ripe for your application. Emulation
may only need a few hours to set up and get going, while an
FPGA prototype can take weeks. However, if the number of
tests you need to perform are more significant and you need
faster performance for software development and compatibility
testing, then FPGA prototyping might serve your needs better.
Although it may take much longer to set up, FPGA prototyping
is unarguably much faster than emulation. Typical emulation
speeds run at about 500 KHz where prototyping can easily run
between 10 and 50 MHz with some reaching as much as
100MHz.

Given these speed differences, the point of performance/testing
crossover between these two solutions is strikingly short (even
with FPGA prototyping’s long set up time) and the performance
gap grows dramatically thereafter. The difference in
performance is particularly steep when prototype replicates

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

63

(copies) are used in parallel. The cost advantage that FPGA-
based prototypes enjoy – typically 5 to 1 – allows multiple
platforms to be deployed, thereby accelerating overall
performance. Therefore, you can complete exponentially more
tests in a shorter amount of time when using FPGA prototyping.

You can read more about the performance cross over
comparison in the EE Times article “Emulation vs. Prototyping -
- The Performance Curve Crossover.”

3) What is your budget?

A simplistic view is that emulation is expensive when compared
to FPGA prototyping. However, a deeper analysis of this idea is
merited. Most companies can afford to implement a few
emulators for early design verification, but when implementing
for a large number of replicates for software development and
compatibility testing, the costs of emulation soar. As
mentioned in the answer to question 2, the cost advantage of
FPGA prototyping is 5 to 1 compared to emulation for even
faster and more cost effective performance.

There's no arguing against the tried-and-true methodology of
emulation. The inherent strengths of emulators are well-suited
to system integration efforts and rigorous verification testing. In
fact, the direct results of performing emulation are designs that
stabilize and mature more quickly. This in turn precipitates a
shift from verifying hardware elements to validating software
components.

When this change in focus occurs, FPGA-based prototypes
become the natural platform to pick up the pace of validation
and further drive software development. Performance crossover
analysis serves as an aid in determining when to make that
shift, and why. Ultimately, this is a powerful demonstration of
how emulation and FPGA-based prototypes are complementary
tools – not despite a performance crossover, but because of it.

http://www.eetimes.com/author.asp?section_id=36&doc_id=1328736
http://www.eetimes.com/author.asp?section_id=36&doc_id=1328736

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

64

How Do I Choose Which Solution to Implement?
Now that you understand when and why you need FPGA prototyping,
you need to know the various FPGA prototyping solutions that you can
employ to maximize your investment. To set up your analysis for the
various FPGA prototyping options, you have to consider your design
size and application, design stage, and resource management
requirements. You’ll also need to take a look at your FPGA prototyping
specifications and then various options in terms of off-the-shelf or
building your own.

Design Specifications

For the size of your design, think in terms of capacity. Without enough
gate-level capacity to accommodate your design, you can’t build a
prototype. Most systems need adequate memory too, so having
sufficient memory available is critical.

You also need to think about the type of application you are building. Is
it IoT, Automotive, Super Computing, Data Storage, Cloud Computing,
Image Processing, a Communication Network, or is it something else?
Is it a design that contains a large number of DSPs or does it require a
lot of logic resources or memory resources? Is it based on a specific
protocol like PCIe or a particular bus standard like AXI? There are
many different types of prototyping hardware and software solutions
that cater to these different application types. Some hardware boards
are flexible enough to scale with your design and allow you to adapt to
different design types through extensions and daughter cards while
others do not.

The design stage refers to when within your design methodology flow
you’ll implement FPGA prototyping. We talked earlier about the FPGA
prototyping sweet spot being used during software testing and
validation and that it is well suited for designs that are fully rendered in
RTL that can be mapped to an FPGA. However, recent advances in
FPGA prototyping technology have extended its value into other areas.
For example, many designs may not be completely mapped to an FPGA
and may be only partially available as behavioral models in descriptions
such as C++ or SystemC.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

65

In these cases, transaction-level interfaces play a critical role in being
able to bridge the abstraction level between behavioral models and live
hardware. Transactors offer a way to communicate between software
running on a host and an FPGA-based prototyping platform that often
includes memories, processors, and high-speed interfaces. These
transactors can be implemented over a well-known bus protocol such
as AXI or an industry-standard transaction protocol such as SCE-MI.
Transactors extend the functionality of the system allowing it to be
used for algorithm/architectural exploration, system integration with
virtual prototypes, and exhaustive testing through software generated
corner tests.

An often-overlooked aspect of design and verification is the
management of hardware, software and personnel resources to
maximize efficiency. This not only includes the assignment of tools to
key engineers throughout the flow but also includes the behavioral
reporting of these assets. In today’s connected world, companies now
have the luxury of taking advantage of engineering talent across the
globe. Because of this, many design teams are geographically dispersed.

Access to FPGA prototyping systems have typically been constrained by
the use of localized systems that require local management and
control. This limited access has presented a significant hindrance to
modern SoC design teams – especially software development teams –
which again are often globally distributed. There are advances in FPGA
technology to alleviate these circumstances to allow for wide
distribution of hardware and management software resources through
the cloud. If you are working with a globally dispersed team, this will
be a factor in choosing the right FPGA prototyping platform for you
and your team.

FPGA Prototyping Specifications

There are a number of FPGA prototyping solutions on the market. The
above analysis will impact your decision on which one you choose.
First, let’s take a look at how your design size factors into the specific
FPGA prototyping solutions. Individual FPGA capacity has increased
significantly over the years reducing the number of FPGA devices
needed. The vast array of FPGA options on the market span a wide

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

66

range of capacities to fit your design size requirements. The larger your
design, the most likely you’ll need an FPGA or FPGAs with the capacity
to follow suit. Today’s FPGAs can handle designs of up to 44 million
gates. Even with these high-capacity FPGAs you must keep in mind
that the usable capacity of an FPGA is roughly 50-70% when
incorporated into an FPGA prototyping environment regardless of the
FPGA prototyping solution that is chosen. Given this fact and that most
designs scale beyond the limits of a single FPGA, a multiple FPGA
prototyping solution is the norm.

Choosing an FPGA prototyping solution that can scale with your
design’s needs is preferred. To get the most from your prototyping
solution, you must consider how easily the prototyping environment
can scale. Does the architecture of the prototyping solution accept
additional hardware be it more prototyping boards or specific daughter
cards geared for a particular design type or design characteristic?
Moreover, does the prototyping solution have the necessary integrated
components to scale with your design? Some designs are so large that
only a handful of FPGA prototyping solutions have the scalable
architecture to keep pace. For example, S2C’s Cloud Cube (a chassis)
can connect up to 32 FPGAs to reach design capacities of up to 1 billion
gates. However, capacity can scale even further when multiple Cloud
Cubes are employed.

Multi-FPGA prototyping platforms do have significant issues when it
comes to I/O count and performance. Not only is mapping large multi-
million gate designs to multiple FPGAs a challenging task, but
performance may suffer because of timing delays between the FPGAs.
Therefore, it becomes apparent that choosing a platform with the
ability to handle complex partitioning is essential to reduce
repartitioning and maintain proper real-time performance.

Multi-FPGA platforms also come with the added difficulty of
debugging. It used to be that signals internal to an FPGA could not be
probed unless they were brought out through the I/O. Fortunately,
major FPGA vendors have internal logic analyzers to address the
visibility issue. However, many of these internal logic analyzers have
several limitations, including support for only single FPGA debug,

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

67

limited memory size using FPGA internal memory, and long place-and-
route times to change probes. Debugging a design partitioned across
multiple FPGAs is all but impossible without a tool that helps set up
probes and makes signals easy to track based on their RTL-level names.
Debugging should use FPGA I/O efficiently and maintain a useful
debug trace.

Of equal importance is the ability to reuse a prototype (or even part of
one) to save development time and lower implementation risk for
future projects. But this is difficult to achieve with a board built for a
specific project. As SoC designs grow in size, they may no longer fit in
older FPGAs. If the interface to an external system is built directly on
the prototyping board, it can’t be reused for projects in which the
interface is different. The ability to reuse your prototype platform
enhances its usefulness, speeds the process of developing new
prototypes, and reduces overall costs.

Given the points made above, there are three options for the type of
FPGA prototyping platform you can implement. All of these options
utilize FPGAs from such vendors as Xilinx and Altera. Specifications
for each of these vendors’ latest FPGAs are shown below.

Image FG-1: Comparison of latest FPGAs from Xilinx and Altera

The first option is a full custom board often referred to as a build-your-
own platform. The connections for custom platforms for both inter-
FPGA and the external interfaces are very specific to a particular
design, which is their advantage. The nature of these platforms lends
itself well to increased performance and maximized use of external
interfaces. Creating a custom platform is an extremely time-consuming
endeavor resulting in an eventual reduction in productivity. The

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

68

expertise necessary to create and implement such a solution can be
daunting and not necessarily in the “wheel house” of most prototyping
teams. Beyond this limitation, there is the fact that most custom
platforms cannot be reused for other projects due to the specificity of
project(s) they were designed for. When you factor in the time, energy,
and risks associated with unproven build-your-own boards the expense
get be quite high.

A second option is the off-the-shelf platform that is comprised of a pre-
built prototyping board with fixed connections for communication
between each FPGA as well as the external interfaces. This type of
board is often referred to as an application-specific FPGA board. These
can be comprised of a single FPGA or multiple FPGAs. Examples
include Xilinx and Altera evaluation boards and many PCIe-based
FPGA boards. The advantages of using an off-the-shelf solution are
reliability and faster time-to-market. These solutions have been
thoroughly tested to avoid bring-up errors when deployed in the field.
The real differences between the various off-the-shelf solutions depend
on the following:

• The type of FPGA that is used,
• How many FPGAs are used,
• What external interfaces are on the board,
• What expansion capabilities are there for the board,
• Does the board come as a reference design?

These systems typically lack support for partitioning and debug.
Scalability is usually not an option, often resulting in having to toss out
the system when the design expands or external interfaces change.

The third option is a scalable or modular approach where cabling and
connectors are used to connect multiple off-the-shelf FPGA boards.
The connections for both inter-FPGA and external interfaces are user-
defined. The benefit of this solution is that performance may be
enhanced by the varying distribution of the interfaces and cables. This
approach also fits most design needs in terms of capacity and external
interfaces. These are reusable platforms, scalable and flexible as designs
grow and design specifications change. When it comes to partitioning
across multiple FPGAs (covered in depth later), the interconnections

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

69

can be adjusted through cables and/or interconnection modules for
higher performance. The flexibility with this approach is inherent, but
along with it comes an enormous amount of cables to manage scaling
beyond 4 FPGAs. There needs to be a balance between utilizing on-
board interconnections versus cables. Should you use Single, Dual, or
Quad FPGA modules as a basis to scale?

Building a Scalable Prototyping Platform
If you’ve determined that you need a scalable FPGA prototyping
solution, then this next section will guide you through the process of
creating a scalable platform.

Whether you need scalability for your current design as you move
through the design and verification process or whether you need your
FPGA platform to be reusable and able to scale for future designs that
may be larger than your current one, it all starts with identifying and
selecting the ideal building blocks. The foundational prototyping board
you choose must have flexibility to expand so a custom platform is
usually out of the question as a custom board requires even greater
customization to grow. When crafting your platform, there are three
initial FPGA building blocks to evaluate: Single FPGA boards, Dual
FPGA boards, and Quad FPGA boards.

Selecting either a single, dual, or quad board depends on your design’s
size, memory requirements, and the number of inter-FPGA
connections and external I/Os that will best fit your needs. The chart
below provides an example of the differences in these board types
based on S2C’s solutions for its Xilinx Virtex UltraScale Logic Modules.

These comparisons don’t tell the whole story though. You must take a
closer look at the architecture for each of these solutions. Besides the
number of physical interconnections between FPGAs, the type (DDR3
or DDR4) and capacity (4GB, 8GB, or more) of on-board memory is
equally important to your design. Of additional interest should be the
number of high-speed gigabit transceivers and their performance level.
The following diagrams provide in-depth comparisons of each of the
architectures for single, dual, and quad FPGA prototyping boards.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

70

Image FG-2: single FPGA module architecture

Image FG-3: dual FPGA module architecture

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

71

Image FG-4: quad FPGA module architecture

The type of I/O connectors used in the FPGA module may have a big
impact on your design mapping and performance. First, they must be
optimized for FPGA I/O banks, and even the FPGA die, in case some
FPGAs have multiple internal die. In addition, having I/Os from
different die will decrease performance. All traces from the FPGA to the
same I/O connector should have the same trace length to increase bus
performance. Connector performance itself may also play an important
role especially if the connectors are optimized for running high
performance LVDS (low voltage differential signaling), especially at
rates over 1 GHz.

It's All About Flexibility

The foundational prototyping board is the first step in building
scalability. Each solution whether a single, dual, or quad system must
allow you to grow, you must be able to have the flexibility to grow your
single system into a dual, quad or beyond. Likewise, your dual system
should allow you to stitch together other systems of the same FPGA
type and architecture to create a quad system.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

72

Even with this flexibility, there are some implications to the number of
interconnects and I/Os when stitching together these systems. Careful
consideration must be given to which system you initially choose. You
will notice in the following diagrams that building these multi-FPGA
systems require the ability for the boards to be connected via cables or
interconnection modules. These systems will also need some sort of
external module to manage global clocking and reset mechanisms.

Image FG-5: Connection of two single FPGA prototyping modules

Image FG-6: Connection of 4 single FPGA prototyping modules

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

73

Going Beyond 4 FPGAs

What happens if your design needs require going beyond the use of
either 4 single FPGAs, 2 dual FPGAs, or a quad FPGA system? This
increase in complexity triggers a whole new set of scalability questions.
These questions can be broken down into several categories.

Space – How big of a desk or lab area do you need to work with a large
number of FPGAs? Although you can continue to stitch together
multiple prototyping boards to expand beyond a quad system, your
physical lab space may be limited making the connections of these
boards much more complicated. Not only will you be dealing with
space issues, but also the cabling of these systems will become very
unwieldy.

Scalability & Flexibility– What if you require more logic and memory
capacity or the system interfaces or memory types change? Can you
configure the large number of FPGA resources for multiple designs?
Because of the investment into large multiple board systems, these
reusability type questions become important. It is much easier to invest
in single board systems if the expectation is that the board will have
limited use beyond the initial design. However, when the initial design
requires the use of a larger prototyping system, your investment must
consider possible changes in the prototyping environments and future
project uses.

Global System Control – How do you provide low-skew clocks and
resets to a large number of FPGAs that you are using for the same
design? Is there a way to easily download to FPGAs remotely and how
fast is it? Lower-end software can provide some sort of support for
these questions but may miss some basic requirements. Furthermore,
the larger the overall hardware system, the more difficult it is to control
such things as clocks and resets. Downloading for larger systems can be
a cabling nightmare. Higher-end systems that offer complete runtime
support and chassis with minimal cabling help reduce the pain
dramatically.

Power Supply – How do you provide power to a large number of
FPGAs? Can each FPGA be individually controlled (On/Off/Recycle)? Is

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

74

there a power-monitoring feature that you can employ? Providing
power individually to each board can impose even more physical lab
space issues not to mention complicating the management of powering
each board.

Reliability – How do you verify that all your clocks and
interconnections are correct? Is there an easy way to monitor the
system as well as the individual FPGA statuses? Making sure a complex
prototyping system as large as 32 FPGAs works correctly is extremely
difficult without automation. If a design isn’t running correctly, a great
deal of time can be wasted trying to manually determine if the error is
due to the design itself or the FPGA system. Software that provides
automated self-test capabilities as well as automated voltage, current,
and temperature monitoring with shut down will provide much needed
peace of mind.

Image FG-7: S2C’s Cloud Cube supports any combination of FPGA boards,
and up to 8 Quad boards can fit into the chassis.

Working with a Chassis Architecture

Many of the issues raised by the above questions can be alleviated
through the use of a chassis for the FPGAs. Employing the use of the
right chassis will allow any combination of boards (whether they be
single, dual, or quad) to be easily housed to fit restrictive lab space
requirements, connected to reduce cabling, and managed to improve

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

75

overall efficiency. As an example, we’ll use S2C’s Cloud Cube to outline
how this type of architecture can be fully leveraged.

A chassis system should easily support both single and multiple module
clock & reset requirements including available global clock resources
and types, internally generated clock, and clock skew. The diagrams
below illustrate how this is done.

Image FG-8: Single Module clock and reset

Image FG-9: Multiple Module clock and reset

Regardless of utilizing a chassis or not, the ability to control, monitor,
and manage the FPGA modules is critical. However, working within a

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

76

chassis system makes performing the following tasks much easier with
some having built-in automation:

• Monitoring the system status,
• Powering the on/off/recycle of individual FPGA modules,
• Controlling global clock & reset and board clock & reset,
• Auto recognition and detection of installed FPGA modules,

cable, and daughter cards,
• Remote FPGA downloading,
• Self-testing of cables, hardware, and FPGA modules,
• Monitoring of the entire system in real-time.

Let’s compare the differences in building a 32 FPGA system using a 2-
dimensional approach versus a 3-dimensional build using a chassis.
We’ll start with creating a 4 by 8 MESH of the FPGAs. A 2D setup
requires a very large lab space with complex power supply to all 32
individual FPGAs as well as a complex clock distribution. As you can
see in the illustration below, using single FPGA modules requires 52
interconnections. If each connection requires 3 banks and each cable
transmits 1 bank, then the system needs 156 cables – a cumbersome
amount of cables to manage.

Image FG-10: A 2D setup to connect 32 FPGAs requires
52 interconnections resulting in 156 cables

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

77

If you implement a 3D approach using Quad FPGA modules in a
chassis the setup is much cleaner and requires far fewer cables to
manage. The illustration below shows the optimization that can be
achieved.

Image FG-11: A 3D setup to connect 32 FPGAs reduces interconnect

In this logical view of a 4 by 8 MESH system mapping to 32 FPGAs on 8
Quad FPGA modules, Bn is the Quad board number, Fn is the FPGA
number on the Quad module, and Jn is the connector number on a
Quad FPGA module.

In order to minimize the cable connections and also cable lengths, we
group the FPGAs in a specific pattern with some rotations from the
logical view. This will also keep the cables from crossing from one side
to the other.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

78

Dotted lines signify the on-board interconnects. You’ll notice that 32 of
the FPGA interconnection points are now using on-board traces and 20
of them use cables. A closer look at the left and right sides of the
chassis reveals how these cable connections would look.

Image FG-12: Chassis cabling for 3D interconnect

Overview of the FPGA Prototyping Methodology Flow
So now that you’ve determined the best FPGA prototyping solution for
your needs, let’s look at the flow for setting up a prototype.

Setting Up a Prototype

A typical implementation flow for a prototype with multiple FPGAs
contains three general parts: Partitioning, Routing / Multiplexing, and
Place and Route.

After the design RTL is created and goes through the synthesis process,
it is then ready for the partitioning stage. As mentioned earlier, many
designs are larger than a single FPGA so the design must be
compartmentalized or partitioned into several FPGAs. Partitioning is
tricky as the design can’t simply be cut into equal parts based on the

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

79

number of FPGAs being used. The design needs to be disseminated not
only according to capacity, but also according to how and what signals
cross between the FPGAs.

However, this is changing as FPGA capacity increases. Proper
partitioning minimizes the interconnect counts among FPGAs and thus
increases the overall system speed. Partitioning done the right way also
keeps the critical design blocks together and allows you to manually
lock certain blocks to specific FPGAs for external interfaces.
Partitioning can be a daunting task but if done with the right tools it
can be easy and efficient. We’ll cover techniques for conquering
partitioning in the Compiling and Partitioning section of this guide.

Once partitioning is deemed successful, the design moves on to the
routing or pin multiplexing stage. When a design goes through the
partitioning stage, cut nets are created. Cut nets are the parts of signals
that get crossed between each of the FPGAs. During the routing phase,
these cut nets get allocated to an inter-FPGA track. Because there are
likely fewer available inter-FPGA tracks than cut nets, multiplexing of
several of these cut nets into a single track must occur. Again, there are
techniques that can be leveraged to make this process go as smoothly
as possible and will be discussed later. There are still cases where no
pin multiplexing is needed, and many designers prefer to create designs
with this goal in order to run their designs at high speed even when
partitioned across multiple FPGAs.

Place and Route is the last step, where the bitstream of each FPGA is
generated and downloaded into the platform to model the design.

What About Debug?

This typical FPGA prototyping flow puts less emphasis on debugging.
There is a reason for this: debugging a single FPGA design is a relatively
simple task. However, performing debug operations on a multi-FPGA
platform is an extremely long and often labor intensive process.

Manual techniques only allow for debugging one FPGA at a time, and
traditional tools such as an external logic analyzer or FPGA internal
logic analyzer have limitations when it comes to multi-FPGA debug.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

80

With manual processes, only gaining insight into the behavior of one
FPGA at a time may result in missed design errors or misleading design
behavior as it becomes difficult to test the functionality of the design as
a whole. The part of a design that resides on a particular FPGA may be
bug-free in its compartmentalized form, but when operated within the
totality of the design may contain critical errors. External logic
analyzers have a limited number of probes and require designers to pull
their probes to the top level so they come out from the FPGA I/O pins.

Because of these issues, debug has been largely inadequate within the
FPGA prototyping process thus leaving debug to be done only through
simulation and/or emulation. But, hold on a minute. There have been
significant advances in FPGA prototyping to deal with the very complex
issue of multi-FPGA debug that augment the FPGA Prototyping Flow.

Image FG-13: Multi-FPGA debug flow

To make the debug of multiple FPGAs possible, probes must be set up
in the RTL prior to synthesis so that they can be tested down the line.
We’ll explore the debug flow part of this flow in more depth during the
Debug section of this guide.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

81

Details of Implementing the FPGA Prototyping Flow
Now that you have a general grasp of the individual components of the
FPGA prototyping flow let’s explore how to implement them in detail.

Compiling and Partitioning the Design

Designs utilizing only one FPGA don’t require partitioning and
therefore designers can immediately enter place & route (P&R) using
either Xilinx or Altera P&R tools. However, as we mentioned earlier,
FPGA capacity has increased significantly but many of today’s designs
are still too big to fit on a single FPGA. Partitioning is a required step
and partitioning a design incorrectly can have dire consequences in the
functionality of the design within the FPGA prototyping environment.

The increased capacity of newer FPGAs has changed the approach to
partitioning. Partitioning a design across multiple FPGAs has been
known to be a very difficult and time-consuming process that primarily
took place at the granular gate-level in order to meet the correct
parameters to partition the design correctly. Doing so resulted in the
creation of a huge number of interconnects between the FPGAs.
Today’s high-capacity FPGAs, like Xilinx’s Virtex UltraScale and Altera’s
Stratix 10, have allowed partitioning to come up a level and become
more of a grouping exercise.

Because most designs today are IP-based (with functional blocks such
as CPU, GPU, and peripherals) the individual blocks are often smaller
than a single FPGA and can therefore be grouped at the IP level rather
than having to go through more fine-grained gate-level partitioning. As
an example one of the biggest ARM processor cores today, the ARM
Cortex-A57, can fit into one Xilinx Virtex UltraScale FPGA. Most IP
blocks have a manageable number of I/Os and partitioning algorithms
should be able to find the best grouping to minimize the number of
interconnects among FPGAs. The result is a much easier and smoother
partitioning experience.

Partitioning can be done manually of course and still many designers
are doing manual partition for smaller numbers of FPGAs. However,
the work is tedious and error-prone and often results in long debug

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

82

cycles. Utilizing commercial partitioning tools can save both time and
help improve the performance of your design.

Image FG-14: Larger FPGAs mean reduced interconnect

Partition speed is always important. Traditionally a gate-level partition
engine can take extremely long hours to partition today’s large SoC
designs. However, gate-level partitioning is no longer required today as
mentioned earlier and therefore partition speed can significantly
increase. In addition, by making some design hierarchies “black boxes”
you can further increase partition performance and simplify the entire
compile flow.

With black-box partitioning, designers can choose which design
hierarchy tree should be black-boxed and therefore any lower level
trees of that hierarchy are hidden from partitioning. The result is an
increase in partitioning performance. The lower level hierarchy trees
are not completely forgotten but simply merged at the FPGA P&R step
of the flow.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

83

Image FG-15: Black-box partitioning

No matter how good the automatic partitioning algorithm is, it can
always be better with some guidance from designers. Therefore, the
following type of grouping constraints should be set by designers to
guide the automatic partitioning engine.

• Normal Group – These are IP or design blocks that you
know should be located in the same FPGA for increased
performance or to minimize the interconnection nets.

• Slot Group – These are specific IP or blocks that should
reside in a specific FPGA. Often there are specific external
interfaces that are only available in one of the FPGAs on the
board and you can use this feature to lock the block to the
correct FPGA.

• Exclusive Group – Some portion of the designs might be
fixed and you do not want to touch or re place and route
again. Exclusive group means only the selected IP/blocks
will be allowed in a specific FPGA.

• Global Group – some design blocks may need to be
duplicated into multiple FPGAs to increase performance
and/or minimize the interconnects among FPGAs.
Examples are circuits that generate global clocks.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

84

Image FG-16: Grouping items to guide partitioning

Splitting design blocks/IP into multiple FPGAs is half of the
partitioning process. FPGAs have a limited number of pins and
therefore the other half of partitioning involves making sure there are
enough I/Os, either physically or through pin-multiplexing.

As newer generations of FPGAs become available, the physical I/O
counts increase dramatically. A Xilinx Virtex UltraScale (VU) has 1,456
I/Os and an Altera Stratix 10 is planned to have 1,600, as compared to
the 1200 I/Os available from a Xilinx Virtex 7 (V7). The I/Os
themselves perform better and can handle pin-multiplexing schemes
more efficiently. For example, in Xilinx’s V7, LVDS can run at 1 to 1.2
GHz compared to its next generation VU that can run at 1.6GHz.

Most complex multi-FPGA designs will require the use of pin-
multiplexing for efficiency. Therefore, it is a good idea to understand
the different methods for conducting pin-multiplexing. The classic
solution is to use a TDM (Time Domain Multiplexing) scheme that
multiplexes two or more signals over a single wire or pin.

This solution is still widely employed and serves as the foundation for
today’s pin multiplexing. However, with advances in I/O technologies,
the need to serve multiple clock domains, and the increasing reliability
of pin multiplexing, many flavors of TDM have emerged to address
different design requirements.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

85

Image FG-17: Signals multiplexed with a fast clock

Flavors of TDM

There are many flavors of TDM methods. TDM can be either
synchronous or asynchronous. TDM can be single-cycle or multiple-
cycles. Finally, TDM can use different I/O standards such as using
single-ended vs LVDS I/O.

Synchronous TDM

In synchronous TDM the multiplexing circuitry is driven by a fast clock
that is synchronous with the (user’s) design clock.

Synchronous mode is sufficient for many TDM implementations, but
there are limitations. There must be no feed-through nets between
FPGAs before inserting TDM (signals that pass through an FPGA
without terminating at a register).

In addition, the difference between the fast clock and the design clock
can introduce issues. The timing diagram below shows an example of
this where event A is the sampling time for the fast clock, and event B
is the sampling time for the design clock – the setup time for both
needs to be the same as a single period of the fast clock.

And the interface between the two clock domains could contain a
critical path, especially when the TDM ratio is quite large. (This is true

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

86

even where all inter-FPGA nets are registered input/output.) This path
is often routed poorly inside the FPGA and usually suffers from timing
violations due to limited FPGA routing resources. This in turn
significantly decreases the speed of the fast clock which decreases the
speed of the design.

Image FG-18: Synchronous TDM timing

Finally, synchronous TDM typically supports only one clock per one set
of pins. Usually this requires stricter timing constraints that can be
hard to meet with a lot of pins, making it difficult to automate.

Asynchronous TDM

In asynchronous mode, the TDM fast clock runs independently of the
design clocks. Although asynchronous mode is slower, it supports
multiple clocks so timing constraints are easier to meet.

Asynchronous TDM addresses the timing violations caused by
synchronous mode, and does not require a timing constraint on the
datapath between clock domains (usually equal to one-cycle of the fast
clock). In fact, the fast clock can always run at its maximum speed. (For
LVDS TDM, this is 1 Gbps for V7 and 1.6 Gbps for VU.) This means the
design clock speed won’t be affected by a potential reduction of the fast
clock, as in synchronous mode.

An additional benefit is that asynchronous TDM is not sensitive to
feed-through nets so these can be used with an asynchronous scheme.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

87

However, the designer should be aware that feed-through nets
transmitted over asynchronous TDM can impact system performance.

Single-cycle and Multi-cycle clocks

The majority of designs utilize a single-cycle clock. The bottleneck for
pin multiplexing frequency becomes the latency rather than how fast
signals can be transmitted between devices. Since LVDS has a longer
latency, LVDS can actually be slower than single-ended signals when
the TDM pin ratio is low. However, when the TDM pin ratio is high,
the LVDS latency becomes less of a factor and therefore runs faster
than single-ended signals.

As for designs that use multiple clock cycles, they can run at full
transmission speed. However, since the data doesn’t get to the
destination in 1 design clock cycle, the designer must manually insure
this is okay for their design. This issue is design dependent, and as
result, can’t be automated.

Single-ended signals versus LVDS

Single-ended TDM uses a single-ended signal which can transmit
physical signals at a speed up to 290 MHz in VU. This is determined by
dividing the TDM ratio (or signal multiplexing ratio) and taking into
account setup, synchronization, and board delays.

With a TDM ratio of 4:1, the system clock speed will be around 17.8
MHz. If the TDM ratio is increased to 16:1, the system clock speed will
drop to less than 10 MHz. From this we can see that as the TDM ratio
increases the performance drops linearly.

However, using the LVDS I/O standard supported by Xilinx FPGAs, the
physical transmission data rate between FPGAs can achieve up to 1.6
Gbps. This offers tremendous advantages over single-ended
transmission, even when considering that a single LVDS signal requires
a pair of single-ended pins.

A comparison between single-ended TDM and LVDS TDM using Xilinx
UltraScale devices shows the difference. (Note: performance for
different FPGA families vary.) Performance of TDM implemented with

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

88

LVDS is typically better than single-ended TDM, especially for higher
TDM ratios.

Image FG-19: Single-ended TDM and LVDS TDM performance
with Asynchronous mode

A different view illustrates another comparison of Single-ended TDM
and LVDS TDM. It shows the number of physical I/O needed to
accommodate a given number of virtual I/O, assuming a system speed
of 11 MHz. This shows that for a system with a clock speed of 11 MHz, if
12,800 virtual connections are needed, single-ended TDM consumes
1600 physical I/O. With LVDS TDM, this number is cut in half to 800.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

89

Image FG-20: Number of physical interconnects needed
for a system running at 11 MHz

Given the physical I/O limitation of FPGAs, partitioning becomes easier
if less physical interconnections are needed. LVDS TDM has clear
advantages over traditional single-ended TDM.

TDM Performance Comparison

A chart comparing asynchronous and synchronous modes with single-
ended or LVDS TDM provides a good summary of the estimated
performances using the various forms of pin-multiplexing. No single
method is better than the other. Preference depends on your target
performance, your design, and the amount of effort you are willing to
put into partitioning. For example, LVDS may not be always be faster
than using the single-ended method because of the long set up time
required for LVDS. Therefore, for low pin ratios, the single-ended
method may actually be faster.

However, if your design can afford data to get from one FPGA to
another FPGA in multiple cycles, you can run at near full LVDS speed
divided by the pin-multiplexing ratio. Of course, this is limited to just
one clock domain and cannot accommodate mixing multiple clock
domains without modifying the design.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

90

Image FG-21: Comparison of TDM modes

Traditional FPGA Debugging Methods

Debugging in FPGAs has been difficult since day one. Unlike
simulation where designers can see any signal at any time, signals when
mapped to a FPGA may be difficult to locate or even worse optimized
away. Even after you identify where the signal is, it may be difficult to
capture the time period in which you would like to observe that signal
as the FPGA runs at real speed and you cannot continuously capture
and store the waveform of that signal. Therefore, some sort of
triggering and waveform storage circuit is needed to perform
debugging in an FPGA. There are two popular approaches today:
external logic analyzer, and internal logic analyzer.

External Logic Analyzers

Let’s first take a look at the use of external logic analyzers that have
been in use for years. Popular external logic analyzers today are from
Agilent and Tektronix and can sample at GHz frequency and store GBs
of waveforms. External logic analyzers have the ability to store large
amounts of trace data but for the data to be useable, the data needs to
be taken off the chip, which can be a difficult task. The signals, or
probes, designers want to observe need to be sent to FPGA I/O pins to
connect to a logic analyzer. Since some probes may be buried deep

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

91

inside design hierarchy, it may be time-consuming to get the right
probes to the top of the design.

Physically, you also need some kind of adapter card that connects the
FPGA I/O pins to the logic analyzer header. For example, Agilent logic
analyzers use a 38-pin Mictor connector. Most off-the-shelf FPGA
boards do provide optional daughter cards that can connect the FPGA
I/O pins to the 38-pin Mictor connector. If you are building your own
(RYO) board, then you should reserve a set of pins to connect to the
Mictor connectors if you choose to have the ability to observe through
a logic analyzer.

The biggest drawback for the use of external logic analyzers is actually
the limited number of probes you can observe at a time since there are
only a limited number of FPGA I/O pins you can use for debug. In most
designs, the majority of FPGA I/O pins are used for external target
interfaces or used as interconnects to other FPGAs if more than one
FPGA is used. Therefore, reserving a large amount of pins for
debugging through an external logic analyzer may not be feasible.
Multiplexing the probes to I/O pins can solve the limited pin issue but
is almost never used since external logic analyzers need to capture data
at real speed and also need to support de-multiplexing on the logic
analyzer side.

Once connected, the external logic analyzer is used to set up triggering
and data capture conditions. Triggering is typically done using a state-
machine technique whereby values are specified for a signal and then
either the data is captured or a different condition is sought after on
another state. The signals remain static while the conditions can be
altered at any time. Trace memory using an external logic analyzer is
rather large therefore memory can afford to be wasted trying to find
trigger conditions that are close to desired observation points. The
advantage of an external logic analyzer is that it can sample at high
frequency (in the GHz range), at high accuracy, and support very
complex triggering conditions. Today, some designers still prefer to use
an external logic analyzer because of these advantages as well as the
feeling that debugging needs to be seen on real equipment, not just
through a software tool.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

92

Internal Logic Analyzers

Internal logic analyzers such as Altera’s SignalTap or the integrated
logic analyzer (ILA) in Xilinx’s Vivado utilize cores embedded into the
design whereby the trigger conditions are set using a GUI in software
on a PC through a JTAG interface. The captured data is transferred to
the PC where it can be viewed and analyzed. The internal logic
analyzers provided by the FPGA vendors are tightly integrated with
their FPGA place and route tool making them easy to learn and use.

However, trace data needs to be stored in the FPGA internal block
memory before a triggering condition is met and therefore they can
only achieve very limited width and depth. Often, you have to choose
between limiting the amount of memory you can have for your design
versus allocating some memory for debugging. When a triggering
condition is met, the logic analyzer stops storing new waveforms in the
memory and shifts out current memory content through JTAG. The
process can be slow if trace data is large. The probes must be statically
defined and trigger conditions can be dynamically changed during
debug just like with external logic analyzers. Most internal logic
analyzers only support probing at the gate level so signal names may
have changed or may have even been optimized away. Since probes are
static, to change probes you usually need to re-compile the design.

Some third party internal logic analyzers do support RTL probing
which can improve the user experience. They also provide more
advanced triggering and analytic features that allow you to get
meaningful data from limited amount of waveform storage memories
inside an FPGA.

Even though internal logic analyzers supplied by the FPGA vendors
have some limitations, they are still by far the most popular tools used
for FPGA debugging today. This is due to their relative low-cost and
tight integration with the FPGA vendors’ own place & route tools.

Multi-FPGA Debugging Methods

External and FPGA Internal Logic Analyzers are better suited for
debugging a single FPGA. Although external logic analyzers can probe
signals simultaneously from a multi-FPGA environment, the limited

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

93

number of probes available makes debug inefficient. Debugging only
one FPGA at a time in a multi-FPGA environment makes effective
debug of the design significantly more difficult, time-consuming, and
error-prone. These logic analyzers can only provide a subset of the
picture in which to debug and don’t have the trace depth for delving
into the behavior of a multi-FPGA design. Debugging only a piece of
the design at a time can lead to errors in other parts of the design as
the bugs are fixed. The difficulties involved with this type of approach
are illustrated in the diagram below.

Image FG-22: Debugging multi-FPGA prototypes means
examining waveforms for each device separately

What’s needed is a holistic approach to debug for multi-FPGA
platforms to ensure design behavior is not affected as bugs are
corrected because RTL-level signals and module names are maintained
throughout. With the use of a configurable external module, multi-
FPGA debug will also allow for the detection of very hard to find corner
case bugs because of the deep trace depth that can be achieved.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

94

Image FG-23: Benefits of using a multi-FPGA debug approach

To understand this more, let’s take a look at how multi-FPGA debug
actually works. In the diagram below you can see that you must first
mark probes at the RTL level so the probes are maintained throughout
the compile flow. There should be no limit to how many probes you
can mark as this simply tells the synthesis and partition tools to retain
the RTL names for probing. After a design is partitioned to multiple
FPGAs you can start selecting the signals you would like to probe in
each FPGA. Multiple groups should be supported so you can see
thousands of signals from any FPGA. Debug instrumentation is then
added to each FPGA for FPGA place-and-route. Note that since the
triggering logic and waveform storage are performed using an external
module, the debug instrumentation in each FPGA consumes very little
resources inside your design FPGA.

After the multi-FPGA design is compiled and downloaded to FPGAs,
you can now set your trigger conditions and the information is
uploaded into the dedicated debug module hardware. When you start
running your design, the debug module will capture and store the
waveforms continuously from multiple FPGAs in external DDR
memory. The communication bandwidth between the debug module to
each FPGA needs to be high in order to trace wide waveform at high
speed. Then, when a trigger condition is detected by the debug module,

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

95

the DDR3 memory content is sent to the host computer for analysis via
a high speed PC port such as Gigabit Ethernet. The waveforms in VCD
or FSDB format can then be debugged using popular waveform debug
tools such as Synopsys Verdi. Signals from multiple FPGAs can be
viewed in a single waveform window.

Image FG-24: Multi-debug flow

The use of a separate debug module of this nature allows for deep trace
with a large number of RTL-level probes, the use of minimal FPGA
resources to avoid design impact, and system-level debugging across
the entire SoC design. An example of this device is the Prodigy Multi-
Debug Module from S2C. The Prodigy Multi-Debug Module supports
up to 32 FPGAs at a time with 16GB of DDR3 trace buffer and can
utilize up to four 5GHz transceivers to capture waveforms from each
FPGA to the debug module. The use of Gigabit Transceivers allows
large amounts of data to be transmitted at high frequency. General
purpose I/O pins are not occupied by debugging so they can be used
for interconnecting between FPGAs and external interfaces. Deep trace
is achieved with 16GB or trace memory with actual trace depth
dependent on the number of signals that are probed. S2C also provides

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

96

an easy-to-use GUI (as shown below) that allows you to mark probes in
RTL before synthesis, quickly locate probes after design partitioning,
and select probes before FPGA place-and-route.

Image FG-25: Mark probes in Prodigy Player Pro

There are variations of the above multi-FPGA debug approach. There
are solutions that use cascading instead of distributed topology to
collect trace data from multiple FPGAs. Cascading topology means that
trace data from multiple FPGAs needs to be collected to a single FPGA
through potentially many FPGAs before transmitting to an external
debug module for storage. Cascading topology is easier to implement in
hardware but the large debugging data going from FPGA to FPGA can
create a bottleneck that in turn reduces the amount of probes that can
be seen at any one time and decreases the speed at which they can be
captured. Distributed topology, on the other hand, sends debug data
continuously from every FPGA directly to the external Debug Module.
The hardware is more difficult to implement but this method can
maximize the number of probes that can be seen at the same time as
well as produce faster capture speed.

Other advanced FPGA Debug Techniques

One technique to increase trace depth is to compress the waveform
being temporarily stored in the memory. The compression needs to be

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

97

lossless and meet the performance required to continuously store
incoming waveforms from multiple FPGAs. This waveform
compression technique has already been developed in some third party
FPGA debug tools to address the trace depth issue.

Hardware assertions in FPGAs is another interesting area that can
make debugging FPGAs easier. Instead of continuously capturing large
amounts of data and looking for trigger conditions to shift out the
waveform for analysis, you can embed the conditions that you are
looking for together with your design in the FPGA. When such
conditions occur, you receive high level messages such as: a memory is
full, a bus has a contention, the CPU is at a specific state, and more.
Nevertheless, most tools today do not generate synthesizable assertions
that can be mapped in FPGAs so designers will have to write and
embed assertions in the FPGAs themselves.

Finally, some newer FPGA families now support register and memory
readbacks and even allow you to set the register and memory content.
The readback feature enables you to access all nodes inside an FPGA at
a given time. However, to access that information you would need to
stop the design clock to shift out the register data. Therefore, this
feature can only be used when the design is run in a controlled clock
environment and not really useful when running FPGA prototypes in or
close to real time speed. In addition, just by taking a snapshot of what’s
inside an FPGA cannot solve the issue/bug you are looking for. Are you
taking the right snapshot and how many snap shots do you need to
take? Readback data is often shifted out through a JTAG port which is
also very slow when dataset is large. FPGA vendors do have plans to
improve this feature by allowing shifting out the readback data without
stopping the clock as well as using a faster protocol to shift out the
data. We hope to see better support of this feature from Xilinx and
Altera and also a complete environment that allows designers to
quickly see what they are looking for.

Exercising the Design
Now that we’ve covered the components of an FPGA prototyping flow
and how to maximize the available technologies within the flow, we

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

98

can move on to the final topic of exercising the design and the methods
that are used to perform actual testing.

Often, simulation and/or emulation are the first things we think of
when talking about testing the design. However, it is worth
remembering that neither simulation and emulation can run at speed
or close enough to actual speed for in-circuit testing. Although
emulation can allow you to get up and running quickly, it is very costly.
FPGA prototyping is the most practical method for doing complex and
thorough pre-silicon tests as well as early software development. We
will now cover two popular test methods using FPGA prototyping.

In-Circuit Testing

The common definition of In-Circuit testing is to connect your design
to real targets intended by your final chip for real world tests before
you have the silicon. FPGA prototyping, which can operate at or near
final chip speed. allows you to simply build those system target
interfaces either directly on the FPGA boards or through the use of
daughter cards.

Image FG-26: In-circuit testing

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

99

The use of daughter cards allows an FPGA prototyping system to be
flexible and scalable. The main FPGA prototyping system can be used
to connect to different in-circuit test targets depending on the design
requirements or can connect to other FPGAs for expansion with the
unused I/O pins. You can either use third party daughter cards that are
usually designed specifically for an application or build your own
daughter cards that fit your application requirements exactly.

Building your own daughter card(s) for FPGA prototyping is actually
not a bad idea since it is unlikely you’ll find a daughter card that meets
your various in-circuit test requirements exactly. Also, the complexity
of building a daughter card is a lot less than building the main FPGA
board and you may be able to reuse the daughter card for your next
project if there are no significant changes in the chip interfaces.
However, by using commercial daughter cards you can still save
precious engineering time and resources in addition to reducing risks.
Many of today’s chip interfaces use industry standards such as USB,
PCIe, Ethernet, DDR, and others, and there are usually commercial
daughter cards available that will meet your requirements.

So what are the considerations for choosing daughter cards or the
FPGA prototyping systems that will hold the daughter cards? Well, the
FPGA prototyping system you select should have abundant unused I/O
pins on I/O connectors in order to use daughter cards. Naturally, the
most important methods for evaluating a prototyping system in this
regard is to examine the type of I/O connectors the system uses, how
the pins are defined, what features the FPGA board supports for using
the daughter cards, and the availability of different types of daughter
cards so you do not have to build everything on your own. The list
below is a good starting point for you to evaluate if a system is ideal for
doing in-circuit testing through reusable daughter cards:

• What type of connectors are being used on the FPGA board and
how many daughter cards are available for that connector?

• Does the type of connector support high speed I/Os such as LVDS
and multi-GHz transceivers?

• How many connectors are available on the FPGA board so you
can connect to different targets at the same time?

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

100

• How many I/O pins are on the connector and how are the I/O
pins/banks optimized on the connector?

• How will the daughter cards get power?
• What are the I/O voltages that are supported on the connector so

you can pass power from the FPGA board to the daughter cards?
• Are there physical limitations on the size of the daughter card

and how reliable is the daughter cards physically?
• Are the daughter cards testable?
• For an off-the-shelf daughter card, does the vendor provide tests?

One of the popular connector standards for daughter cards is FMC. It
has been used by Xilinx evaluation boards for many years and comes in
2 flavors: HPC, which has a higher pin count with transceivers, and
LPC, which has fewer pins and no transceiver support. There are many
off-the-shelf daughter cards that are based on the FMC standard thanks
to the popularity of the Xilinx evaluation boards. However, FMC is not
an ideal choice for high-end prototyping systems because the
connector is physically too big with too many I/O pins per connector so
you will not have many I/O connectors on a single board. The I/O
connectors are used for daughter cards as well as interconnecting
multiple FPGAs together. Also, FMC connectors have poor
interconnection cable support. As a result, most advanced prototyping
systems define their own connector standards to solve the deficiency of
the FMC connector.

As an example, S2C’s Prodigy Connector is a compact, high-
performance, 300 pin connector that can support the running of multi-
GHz transceivers. It supports 3 full FPGA I/O banks and all traces from
the same I/O connector have the same length. The Prodigy Connector
has a matching Prodigy Cable that can connect 2 Prodigy Connectors
with pin 1 matching pin 1. The Prodigy Connector supplies 2 voltages
from the FPGA board to the daughter board: 3.3V and VCCIO voltages.
In addition, there is an I/O voltage detection function so when the
wrong voltage is input into the daughter card from the FPGA board,
the power will be automatically shut off.

S2C has dozens of daughter cards including processors, embedded,
multimedia, and memory, that can run on Prodigy logic modules, and

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

101

many have reference designs to run out-of-the-box. S2C also provides
an FMC to Prodigy Adapter Module so FMC daughter cards can also be
used on Prodigy logic modules.

Daughter card modules can be reused across multiple configurations of
FPGA prototypes and among multiple projects/locations. Employing
these daughter cards within a complex environment is simplified with
the use of auto-detection technology that indicates the presence of a
specific daughter card and allows for the configuration of design data
related to the specified daughter card. S2C Prodigy Daughter Cards
support this advanced feature.

Some vendors also provide daughter card customization services
targeting special system interface requirements that cannot be met by
off-the-shelf solutions. These services usually entail collaboration to
understand your needs in creating a detailed specification of the
daughter card. Once the specification is complete, the daughter card is
designed, developed, and then thoroughly tested. A reference design is
typically included that will help in the actual use of the daughter card
on your design. These services can be extremely beneficial if you are
working on a tight time-to-market schedule and cannot support the
engineering resources internally to create your own.

In-circuit testing using FPGA prototyping allows you to obtain detailed
system performance metrics and proof-of-concept results quickly and
easily. Detecting issues such as functional definition errors or system-
level timing errors are just a couple of examples of the system data that
can be collected. FPGA prototyping offers uncompromised flexibility
with support for industry bus standards such as PCIe, USB, Ethernet,
and more, simplifying the testing associated with these standards.

Hybrid Prototyping

In-circuit testing is probably the most important reason for doing
prototyping today. But in-circuit tests are usually based on un-
constrained random tests, which don't always ensure complete test
coverage. Using a transactor interface allows test cases developed in
simulation to be run directly on the prototype making these tests
instantly available and insuring compliance. Moreover, these tests can

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

102

be easily extended to large data sets, providing coverage for corner
cases and hard-to-find bugs.

The addition of a transactor interface to an FPGA-based prototype
facilitates development of new systems in interesting ways. As
behavioral models are introduced, architectures become refined and
block functionality determined. These blocks are eventually defined
and implemented as part of the new system. But blocks that are defined
and rendered in RTL become IP for the next generation of systems,
allowing the cycle of development to repeat. In this way, an FPGA
prototyping platform becomes the engine of system advancement.

Image FG-27: Behavioral models and transactors

FPGA-based prototyping is well-suited for designs fully rendered in
RTL and that can be mapped to an FPGA. However, many designs may
not be completely mapped to an FPGA and may only be partially
available as behavioral models in descriptions such as C++ or SystemC.
In these cases, transaction-level interfaces play a critical role in being
able to bridge the abstraction level between behavioral models and live
hardware. These transactors offer a way to communicate between

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

103

software running on a host and an FPGA-based prototyping platform
that often includes memories, processors, and high-speed interfaces.

S2C’s unique patent-pending Prodigy ProtoBridge™ System is a
solution that allows for just this type of high-speed communication.
ProtoBridge supplies a transactor interface between a software program
and the world of AXI-compliant hardware. There are two key parts to
this: an AXI-to-PCIe bridge that connects to a host computer, and a C-
API that communicates to the design through the bridge. The software-
to-AXI transactor offers new flexibility to designers building ARM-
based systems. Coupling this to a PCIe interface supporting transfer
speeds up to 1000 Mbytes/sec provides a perfect development platform
for data-intensive applications.

Image FG-28: S2C Prodigy ProtoBridge

A system like this allows designers to maximize the benefits of FPGA-
based prototypes much earlier in the design project for algorithm
validation, IP design, simulation acceleration, and corner case testing.
A prototype combined with a transactor interface makes a range of
interesting applications possible throughout the design flow.

PROTOTYPICAL: The Emergence of FPGA-based Prototyping for SoC Design

104

Coding with FPGA-based Prototyping in Mind
We’ve walked you through the steps for effectively implementing an
FPGA prototyping methodology. We discussed how to choose the
prototyping system that fits your design requirements and how to
extend and scale that system as your design needs change. You should
also now have a good understanding of the best practices for
partitioning, debugging, and exercising your design.

What about taking FPGA-based prototyping to the next level? How can
you maximize your FPGA prototyping experience? The next step in the
process is to code your design with FPGA prototyping in mind. This
topic was explored briefly by Mon-Ren Chene in his foreword to
“Prototypical” and will become a key launching point for the future of
FPGA-based prototyping. We look forward to providing you with the
knowledge you need to further your FPGA prototyping goals.

About the Authors

Daniel Nenni has worked in Silicon
Valley for the past 30 years with
computer manufacturers, electronic
design automation software, and
semiconductor intellectual property
companies. He is the founder of
SemiWiki.com (an open forum for
semiconductor professionals) and
the co-author of “Mobile Unleashed:
The Origin and Evolution of ARM
Processors in Our Devices” and
“Fabless: The Transformation of the
Semiconductor Industry.” Daniel is
an internationally recognized
business development professional
for companies involved with the
fabless semiconductor ecosystem.

Don Dingee has been in the
electronics industry since 1983, with
experience spanning engineering,
sales, marketing, and web
development roles. He is the co-
author of “Mobile Unleashed: The
Origin and Evolution of ARM
Processors in Our Devices.”
Currently Don is a product strategy
consultant and content marketing
freelancer working with firms on
embedded, mobile, and IoT
applications. Don also blogs on
SemiWiki.com.

PROTOTYPICAL

DAC 2016 | Austin, TX | June 5-9

“Our commitment to customers has been to push the limits of
what FPGA prototyping can do to make designing easier, faster,
and more efficient.”

- Mon-Ren Chene, CTO of S2C

PROTOTYPICAL looks at the history of FPGA-based prototyping
and its role in SoC design, along with a look forward at how it
can help application segments such as automotive, the IoT, and
wearables. A practical Field Guide is included addressing
questions designers typically have, the issues they often run
into, and technical approaches to solve them.

	Foreword
	The Future of FPGA Prototyping
	Design for FPGA Prototyping
	Moving to the Cloud

	Introduction: The Art of the “Start”
	A Few Thousand Transistors
	Microprocessors, ASICs, and FPGAs
	Pre-Silicon Becomes a Thing
	Enabling Exploration and Integration

	Chapter 1: SoC Prototyping Becomes Imperative
	Programmable Logic in Labs
	First Productization of Prototyping
	Fabless and Design Enablement

	Chapter 2: How S2C Stacked Up Success
	Making ESL Mean Something
	TAI IP and “Prototype Ready”
	Taking on the Cloud

	Chapter 3: Big EDA Moves In
	A Laurel and HARDI Handshake
	Verification is Very Valuable
	An Either-Or Response
	A Bright Future Ahead

	Chapter 4: Strategies for Today and Tomorrow
	The State of FPGA-Based Prototyping
	Developing for ARM Architecture
	Adoption Among Major System Houses
	Application Segments in Need

	FIELD GUIDE
	When Do You Need an FPGA-based Prototyping Solution?
	How Do I Choose Which Solution to Implement?
	Design Specifications
	FPGA Prototyping Specifications

	Building a Scalable Prototyping Platform
	It's All About Flexibility
	Going Beyond 4 FPGAs
	Working with a Chassis Architecture

	Overview of the FPGA Prototyping Methodology Flow
	Setting Up a Prototype
	What About Debug?

	Details of Implementing the FPGA Prototyping Flow
	Compiling and Partitioning the Design
	Flavors of TDM
	TDM Performance Comparison
	Traditional FPGA Debugging Methods
	Multi-FPGA Debugging Methods
	Other advanced FPGA Debug Techniques

	Exercising the Design
	In-Circuit Testing
	Hybrid Prototyping

	Coding with FPGA-based Prototyping in Mind

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

