

 1

@2021 by SemiWiki.com LLC

All rights reserved. No part of this work covered by the copyright herein
may be reproduced, transmitted, stored, or used in any form or by any
means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, taping, digitizing, web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 US Copyright Act, without
the prior written permission of the publisher.

Published by SemiWiki LLC Danville, CA

Although the authors and publisher have made every effort to ensure the
accuracy and completeness of information contained in this book, we
assume no responsibility for errors, inaccuracies, omissions, or any
inconsistency herein.

First printing: July 2021

Printed in the United States of America

2

Contents

Part I – Evolution of Design Verficiation Techniques

The Art of the “Start” .. 4

A Few Thousand Transistors .. 6

Microprocessors and ASICs ..9

The Birth of Programmable Logic ... 11

Pre-Silicon Becomes a Thing ... 15

Positioning: The Battle for Your Mind ... 19

First Pentium Emulation... 20

Enabling Exploration and Integration .. 25

Part II - FPGA Prototyping for Different Design Stages

Design Exploration .. 30

IP Development ... 35

Hardware Verification ... 45

System Validation ... 57

Software Development ..64

Compatibility Testing .. 71

 3

 Prototypical II

Part I – Evolution of Design Verification
Techniques

4

 Prototypical II

The Art of the “Start”

The semiconductor industry revolves around the “start.” Chip design
starts lead to more EDA tool purchases, more wafer starts, and
eventually to more product shipments. Product roadmaps develop to
extend shipments by integrating new features, improving performance,
reducing power, and reducing area – higher levels of functional
integration and what is referred to as “improved PPA.” Successful
products lead to additional capital expenditures, stimulating more chip
designs and more wafer starts. If all goes well, and there are many things
that can go wrong between the MRD and the market, this cycle
continues. And in keeping with good capitalist intentions, this frenetic
cycle drives increased design complexity and design productivity to feed
the global appetite for economic growth.

Chip designs have mutated from relatively simple to vastly complex and
expensive, and the silicon technology to fabricate chips has advanced
through rapid innovation from silicon feature sizes measured in tens of
microns – to feature sizes measured in nanometers. Once visualized as
ones and zeroes in a table, functions now must comprehend the
execution of powerful operating systems, application software, massive
amounts of data, and heretofore incomprehensible minuscule latencies.

Continued semiconductor industry growth depends on delivering ever

more complex chip designs, co-verified with specialized system software
– in less time with relatively fewer mistakes. New chip wafer fabs now
cost billions of dollars, with production capacities in the 10’s of
thousands of wafers per month – in May of 2019, TSMC announced that
it would build a new wafer fab in Arizona. The total project spending for
the planned new 5-nm wafer fab, including capital expenditures, is
expected to be approximately $12B from 2021 to 2029, and the fab is
expected to have the capacity to produce 20,000 wafers per month. [1]
One malevolent block of logic within a chip design can cause very

 5

 Part I – Evolution of Design Verification Techniques Prototypical II

expensive wafers to become scrap. If a flaw manages to escape, only
showing itself at a critical moment in the hands of a customer, it can set
off a public relations storm calling into question a firm’s hard-earned
reputation as a chip supplier.

Chip design verification is like quality: it asymptotically approaches
perfection but never quite achieves 100%. It may be expressed as a high
percentage less than 100%, but close enough to 100%, to relegate fault

escapes to the category of “outlier” – hopefully of minimal consequence.
Only through real-world use in the hands of lots of customers will every
combination of stimuli be applied to every chip pin, and every response
be known. So, chip designers do their best to use the latest cocktail of
verification techniques and tools, and EDA companies continually
innovate new verification tools, design flows, and pre-verified silicon IP,
in a valiant effort to achieve the elusive goal of achieving chip design
verification perfection.

The stakes are very high today for advanced silicon nodes where mask
sets can cost tens of millions of dollars, and delays in chip project
schedules that slip new product roll-out schedules can cost millions of
dollars more in marketing costs. With the stakes so high for large,
sophisticated chips, no prudent leader would dare neglect investing in
semiconductor process quality. Foundries such as GlobalFoundries,
Intel, Powerchip, Samsung, SMIC, TSMC, UMC, and others have
designed their entire businesses around producing high-quality silicon
in volume at competitive costs for their customers.

So, chip design teams struggle to contain verification costs and adhere
to schedules. The 2020 Wilson Report found that only about 32 percent
of today’s chip design projects can achieve first silicon success, and 68
percent of IC/ASIC projects were behind schedule. [2] A prevailing

attitude is that the composite best efforts of skilled designers using
advanced EDA design tools should result in a good outcome. Reusing

6

 Prototypical II

known-good blocks, from a previous design or from a reliable IP source,
is a long-standing engineering best practice for reducing risk and
speeding up the design cycle. Any team that has experienced a chip
design “stop” or “delay” knows the agony of uncertainty and fear that
accompanies these experiences. Many stories exist of an insidious error
slipping through design verification undetected and putting a chip
design, a job, and sometimes an entire company, at risk. The price of
hardware and software verification escapes can dwarf all other product
investments, and ultimately diminish a hard-earned industry leadership
reputation.

Enter FPGA-based prototyping for chip design verification. A robust
verification plan employs proven tests for IP blocks, and tests the fully
integrated design running actual software (co-verification) – which is
beyond the reach of software simulation tools alone. Hardware
emulation tools are highly capable, and faster than software simulation,
but highly expensive and often out of reach for many design teams.
FPGA-based prototyping tools are scalable, cost-effective for almost any
design, offer capable debug visibility, and are well suited to hardware-
software co-verification.

In this book, we look at the history of FPGA-based prototyping and the
leading providers – S2C, Synopsys, Cadence, and Mentor. Initially, we
will look at how the need for co-verification evolved with chip
complexity, where FPGAs got their start in verification, and why ASIC
design benefits from prototyping technology.

A Few Thousand Transistors

One transistor came to life at Bell Labs in 1947. Solid-state electronics
held great promise, with transistors rapidly improving and soon

outperforming vacuum tubes in size, cost, performance, power

 7

 Part I – Evolution of Design Verification Techniques Prototypical II

consumption, reliability, and footprint. However, there were still
packaging limitations in circuit design, with metal cans, and circuit
boards and wires, and discrete passive components such as resistors and
capacitors. [3]

In 1958, Jack Kilby of TI demonstrated a simple phase-shift oscillator
with one bipolar transistor and roughly hewn resistors and capacitors on
one slice of germanium, with flying wire connections on the chip. By

1960, Fairchild teams led by Robert Noyce had a monolithic integrated
four-transistor flip-flop running in silicon, a more stable and mass-
producible material and process. [4], [5]

Standard small-scale integration (SSI) parts appeared in 1963, with
Sylvania’s SUHL family debuting as the first productized TTL family
(Transistor-Transistor Logic). TI followed with the military-grade 5400
Series and the commercial-grade 7400 Series, setting off a parade of

second-sourcing vendors. In rough terms, these SSI parts used tens of
transistors providing a handful of logic gates. [6]

Figure 1: 7400 SSI Logic Device – Quad 2-Input NAND Gates

Medium-scale integration (MSI) first appeared with the 4-bit shift
register – a part that Irwin Jacobs of Qualcomm fame proclaimed in a
1970 conference as “where it’s at” for digital design. MSI parts with
hundreds of transistors extended the productized logic families with a
range of functions, but were still simple to use. Where SSI parts offered
several individual gates in a single package with common power and

8

 Prototypical II

ground, MSI parts usually grouped gates into a single functional logic
block operating on multiple bits of incoming data. Pin counts and
package sizes remained small. SSI and MSI parts are the electronic
equivalents of hand-chiseled statues. Producing a mask was labor-
intensive, with layouts carefully planned and checked by engineers.
Vendors heavily parameterized parts across variables of voltage,
temperature, rise and fall time, propagation delay, and more. Each chip
was a small block of IP, taken as golden, assembled into a system using
wire wrapping or stitching for prototypes or short runs, and printed
circuits for finished products in higher volumes. Everything about an SSI
or MSI design was readily visible just by probing with an oscilloscope or
logic analyzer at the package pins, and problems were usually
somewhere in the wires in between.

Figure 2: Texas Instruments SN74S181N 4-bit ALU with 63 logic gates

That changed drastically when large-scale integration (LSI) parts
emerged. The early 1970s saw chips for digital watches, calculators, and
the first integrated computer memories, each with a few thousand
transistors. LSI parts were analogous to Mount Rushmore – carved from

the monolith in labor-intensive steps. Parts were harder to verify post-
layout, and more expensive to fabricate. Packaging changed as chips had

 9

 Part I – Evolution of Design Verification Techniques Prototypical II

significantly more I/O pins. Second-sourcing became less common as
vendors protected their high-value IP. Using LSI chips changed as well.
The good news was more functions were integrated. The bad news was
board-level test visibility declined, with designers having to trust the
datasheet because the inner workings of a chip were mostly
impenetrable. Chip errata become commonplace; instead of fixing the
chip layout immediately, vendors spent energy on diagnosing issues and
determining workarounds, waiting to gather enough fixes to justify a
chip re-spin.

Microprocessors and ASICs

Entire “processors” were implemented by connecting LSI, MSI, and SSI
chips on printed circuit boards. A prime example was a Linkabit design
in 1971 for a Viterbi decoder – 360 TTL chips on 12 boards, in a single
4.5U rackmount enclosure replacing a couple of cabinets of earlier
equipment. Assembly language programming took shape, with simple
instruction sets. This was exactly the transformation Jacobs had been
talking about, but his firm and many others were looking beyond to
bigger chips that consolidated functions. [7]

Figure 3: Intel 4004 microprocessor

10

 Prototypical II

Intel moved to the lead in LSI with offerings in DRAM, EPROM, and a
new type of chip in November 1971: the microprocessor. Its first part
sprang from a custom product for a Japanese calculator vendor. The
4004 4-bit microprocessor debuted under the MCS-4 banner, including
RAM and ROM and a shift register tuned for the 4-bit multiplexed bus.
With 2300 transistors fabricated in 10-micron silicon and running up to
740 MHz, the 4004 had 16 internal registers and offered 46 instructions.
[8]

Feverish competition ensued as a slew of vendors created new 8-, 16-,
and 32-bit microprocessor architectures during the late 1970s and early
1980s from chip companies including Intel, Zilog, Motorola, and
Signetics. Even with lengthy schedules and meticulous design checking,
very few of these complex chips worked the first time. Design and fab
costs continued escalating as transistor counts moved into the tens of
thousands and beyond. Most of these microprocessor vendors had large

fabrication facilities, and proprietary design flows tuned to their
engineering standards and fabrication process. A sea of changes was
occurring in VLSI (Very Large-Scale Integration), with several
technological advances fanning the flames of semiconductor company
competition.

The first use of ASICs was as glue logic for improved integration of other
discrete chips, or as companion chipsets to microprocessors, customized

to a specific application. A growing roster of ASIC vendors eventually
including AT&T, Fujitsu, IBM, LSI Logic, Plessey, Toshiba, TI, and VLSI
Technology were working to harvest the economic benefits of the best
abstracted design flow with chip design tools, IP libraries, and fab
qualification. For the first time, design teams at a customer could create
parts using a “standard cell library”, and get the design produced as a
custom ASIC at moderate risk and reasonable lead times of a few

months.

 11

 Part I – Evolution of Design Verification Techniques Prototypical II

The average 32-bit microprocessor trended toward being bloated, with
more transistors to execute complex instruction sets (CISC) with
routine, and not-so-routine, operations and specialized addressing
modes. Researchers focused on the flow of CISC instructions, deciding
that instruction sets could be optimized for simplicity and performance,
and came up with the idea of a Reduced Instruction Set Computer, or
RISC. ASICs and RISC architectures then lead to new microprocessor
companies, including MIPS Computer Systems, Sun Microsystems, and
others producing new processor chip products to compete with Intel’s
CISC architecture processor chip products.

The Birth of Programmable Logic

Early programmable logic devices (PLDs) were emerging in the mid-
1970s as an adaptation of early programmable read-only memory
(PROM) technology. Read-only memories (ROMs) were a common
staple of electronic system design – they were also commonly referred to
as “non-volatile memory devices” (NVMs) because these memories
would retain their contents upon the loss of power. ROMs would be
programmed with information that might only be used at system startup
and did not change during system operation, such as “boot ROM
operations”, which enabled systems to automatically restart after every
power cycle by implementing a minimum set of startup operations that

would automatically execute after each incidence of power loss when
power was eventually restored. Early bipolar (CMOS semiconductor
technology was still in its infancy at the time) programable read-only
memory devices (PROMs) emerged with memory densities from 256-bits
(32 words by 8 bits) to 4K-bits (512 words by 8 Bits). PROM devices
would be manufactured with all of the memory content in the same
“state” (ONE or ZERO) and the user would “program” the PROMs with

an application-specific content by applying prescribed voltages to the
device pins in a prescribed sequence affecting selected wires (sometimes

12

 Prototypical II

called “fuses”) that would change the logic state of selected memory bits.
The bipolar PROM programming process is an irreversible, “one-time”
process – once the PROM was programmed, it could only be
reprogrammed by changing any previously unprogrammed bits, but the
previously programmed bits could not be changed again. In some cases,
users would organize the PROM into “banks” of memory (where a bank
was selectable with a most-significant memory address bit), and if the
memory image needed to be changed, a different memory bank would
be programmed with the new memory image. Since PROM
programming was a physical process involving a wide variety of PROM
devices from various semiconductor companies with a wide variety of
PROM programming procedures – another product market was born to
commercialize PROM programming products – eventually lead by
companies like Data I/O.

Imagine, if you will, the early bipolar PROM semiconductor technology
required to effectively “melt” the semiconductor metal interconnects
between transistors to permanently change the logical state of each
selected memory bit – to produce devices that could be mass-produced,
subsequently programmed in the field by users, and then be expected to
operate reliably over time in production electronic systems. The affected
metal layer interconnect needed to be “opened”, or removed, after the
semiconductor manufacturing process, including packaging

considerations that would tolerate the electrical currents necessary to
only melt the selected interconnect, without any remaining metal
fingers that might not render the electrical connection completely open,
and no remnants of the violent microscopic physical event required to
open the electrical connection would be “splashed” onto neighboring
circuits and adversely affect their electrical integrity.

Why all this fuss about building a field programmable logic device?

Well, I don’t believe that the pioneers of early programmable logic could
possibly have imagined that the programmable logic market would

 13

 Part I – Evolution of Design Verification Techniques Prototypical II

explode the way it has into today’s FPGA market – almost a half-century
later. At Signetics, a pioneer of programmable logic devices,
management would need to be “sold” on the idea that existing Signetics’
MSI and SSI logic device customers would rush to buy high volumes of
these new, more highly integrated logic devices. At the time, if you were
building almost any commercial digital system, you would buy boatloads
of the MSI and SSI logic devices, mount them on printed circuit boards,
and either hard-wire the interconnect with board-level metal traces, or
use “wire-wrap” techniques to connect the socketed logic devices. It was
not uncommon to spend long hours of logic system debug time with a
wire-wrap gun, and wire-wrap wire removal tool, to bring-up new digital
systems. The only options at the time for a higher density
semiconductor implementation of a complex digital system were the
newly emerging microprocessors that could implement the required
logical functionality in software, or, if the expected end-product
production volume was high enough to justify the cost, custom silicon
ASICs.

Signetics and Intersil were two of the first semiconductor companies to
offer programmable logic devices by adopting their PROM programming
technology to logic devices. Signetics, who was a market leader in
bipolar PROMs, as well as a leading supplier of MSI and SSI logic devices
(7400 and 74S series), began offering bipolar programmable logic

devices in a 28-pin plastic package adapted from their line of MSI and
SSI logic devices.

Signetics called these devices fuse Programmable Logic Arrays, or
FPLAs. FPLAs were simple at first: field programmable by the user, 16
inputs variables, 48 programmable product terms (or P-terms), and
eight outputs functions (16 x 48 x 8). Signetics named this product the
“PLS100”, and claimed it was fully supported by “industry standard

(JEDEC compatible) PLDCAD tools for designing the logic function to
be implemented, including Signetics’ SNAP, Data I/O Corporation’s

14

 Prototypical II

ABEL, and Logical Devices Inc.’s CUPL design software packages.” [9]

Figure 4: Signetics PLS100 Programmable Array Logic Diagram

Another breakthrough was near. Altera took an idea from the research
halls of GE, combining the elements of EPROM memory (Erasable
PROM) with CMOS floating logic gates, and added synthesis software in
1984. A logic design for the Altera EP300 could be created on a PC in a
week or so using schematic capture, state machine, or logic table entries.
Parts could be “burned” (programmed) and easily erased with ultraviolet
light – and then reprogrammed as needed, in a matter of hours.
Customers with conventional digital logic schematic entry skills had
access to relatively high levels of customization with very low
turnaround time.

Figure 5: Altera EP300 programmable logic device

 15

 Part I – Evolution of Design Verification Techniques Prototypical II

A different technology appeared on November 1, 1985, with the
thundering headline, “Xilinx Develops New Class of ASIC”. [10] The
XC2064 logic cell array was RAM-based, loading its configuration at
boot time. Soon to be labeled by the media as a field programmable gate
array or FPGA, these first parts featured 1200 gates, offering more
scalability and higher performance. Logic could be simulated on a PC,
and in-circuit emulation aided in functional verification.

Pre-Silicon Becomes a Thing

With programmable logic in its infancy, VLSI designs were still territory
for ASICs. Even “moderate risk” using ASIC technology was still a
significant risk. The SPARC I processor took four re-spins to get right. In
contrast, the ARM1 processor at Acorn Computers powered up and ran
on its first arrival from VLSI Technology in April 1985 – a minor miracle
that shocked its creators and still stirs amazement.

From Calma and Applicon came the first EDA tools from pioneers Daisy,
Mentor, and Valid which were adapted from Calma and Applicon circuit
board design – to ASIC design tasks. [11] Rather than capturing a design
and “tossing” it into silicon and hoping for good results, more emphasis
was being placed on design verification to confirm correct operation
prior to committing to silicon. EDA workstations were relatively fast, but

the simulation of a VLSI design was still a tedious and slow process –
requiring a great deal of skill to create a testbench that would provide a
comprehensive set of stimuli and expected responses.

In many cases, ASIC simulation was cheaper than a failed piece of
silicon, which meant more dollars and several more months waiting for
a silicon fix. [12] Nonetheless, some designers resigned themselves to
accept that it was not possible to “get it right” with one spin of silicon,

and literally planned for the inevitable re-spin (or two) and set a goal to

16

 Prototypical II

“minimize” the number of re-spins to 2 or 3 rather than plan to eliminate
re-spins.

Major chip design innovation was happening at Intel. Thanks to the
success in PC markets, its microprocessor families evolved rapidly. The
design of the first mainstream PC processor, the 8088 released in 1979,
involved painstaking human translation of logic gate symbols into
transistors. For the 80286 debuting in 1982, an RTL (register transfer

level) model drove high-level design and timing analysis, but manual
translation into transistor structures was still necessary. The 80386
launched in 1985, was a 32-bit extension of the 80286 architecture
requiring 275,000 transistors, [13] and saw a wider use of RTL synthesis
and a move toward CMOS standard cells, with only several specific logic
blocks which were hand-optimized.

If Intel was to continue its winning streak, it needed a breakthrough in

design productivity. They knew that they would not be able to hire
enough chip designers to keep up with the anticipated growth in
processor design complexity. Development processes had to change to
require fewer engineers and shorten the design cycle time for
increasingly more complex parts. In 1986, Intel made a $250M
investment for its next microprocessor design, including a proprietary
system of EDA tools and practices. To enable fully automatic synthesis
of layout from RTL, teams created iHDL, built logic synthesis tools from
code developed at the University of California, Berkeley, and formalized
and extended its standard cell libraries. The result was the 80486 in
1989, breaking the one-micron barrier with a staggering 1.18M
transistors. [14]

Even with these investments in tools and processes, Intel knew that
software-based simulation was too slow. RTL simulations were chewing

up more than 80% of Intel’s EDA computing resources, and the
verification effort was growing non-linearly with processor size. Intel

 17

 Part I – Evolution of Design Verification Techniques Prototypical II

was focused on reducing the verification effort and made it a priority to
find a better way. A new verification solution would come from an
unexpected source: a small startup company – Quickturn Design
Systems. Quickturn was founded in May 1988 by Mike D’Amour and
Steve Sample from Daisy Systems, and they envisioned a new type of
verification platform targeting chip designers. Their first FPGA
prototyping product was called the Rapid Prototype Machine (“RPM”)
using an array of Xilinx XC3090 FPGAs. Quickturn’s early software could
take an ASIC netlist of tens of thousands of gates, partition it into a large
array of FPGAs, and model chip design functionality that could be run
much faster than other verification methods available at the time. [15]

Figure 6: Quickturn Systems RPM datasheet

In the beginning, Quickturn was struggling with what to call their new
technology – what we call “Emulation” today. When Quickturn first
talked with potential customers about Emulation for ASIC design
verification, it was a time when software simulation, hardware
accelerated simulation, and FPGA prototyping were all commonly used
for design verification in varying combinations – and hardware

18

 Prototypical II

Emulation was unknown and different from the other available
verification approaches. Traditional software simulators used a “timing
wheel” approach to model the propagation of signals through the design
logic with each “tick” of the design clock. The propagation of signals
through each and every logical element of the design would be evaluated
for each clock cycle, and then the evaluation would be repeated for each
subsequent “tick” of the design clock – like a “wheel” that completes one
turn with every clock cycle using the propagated signals from the
previous clock cycle to stimulate every logical element of the design on
the next clock cycle.

Simulation accelerators were also timing wheel-based engines using
specialized hardware, and were faster than software simulators running
on servers, but accelerators were still orders of magnitude slower than
running the design on an FPGA hardware implementation. At the time,
FPGA prototyping was mostly relegated to small designs that could fit
into a single FPGA, and was a primitive, highly manual process, not
considered for large designs that required multiple FPGAs connected
together into a single large “sea of gates”. Further, because FPGA
suppliers considered FPGA design tools to be an enabler to selling
FPGAs chips, pricing for these tools was inherently depressed – the
FPGA suppliers basically gave the tools away as a necessary selling cost
for selling the FPGAs. FPGA suppliers were in the business of selling

FPGAs, not design tools, and consequently, the economic incentive for
EDA companies to invest in innovation was impaired.

In early discussions with potential customers, Quickturn customers
would ask: “Do you mean simulation acceleration?” The answer would
be, “no, it’s much faster.” Then the customer would ask: “Do you mean
FPGA prototyping?” Again, the answer would be “no,” because FPGA
prototyping at the time referred to a highly manual process that lacked

serious automation for implementing the prototype. What Quickturn
was developing was different from simulation, simulation acceleration,

 19

 Part I – Evolution of Design Verification Techniques Prototypical II

or the FPGA prototyping of the day, so Quickturn searched for a new
“category name” that was not “simulation”, and was not “FPGA
prototyping”. To clearly differentiate this new verification method,
Quickturn would eventually choose the name “Emulation”, and
“position” a new “market category” in the minds of customers –
something different yet similar to the already familiar verification
methods of the day.

Positioning: The Battle for Your Mind

The Al Ries’ and Jack Trout’s book “Positioning: The Battle for Your
Mind,” [16] was an inspiration to Quickturn at the time, and they rallied
behind several of the book’s concepts to position Emulation in the
hierarchy of existing verification tools:

“‘It’s better to be first than it is to be better’ is by far the most powerful
positioning idea.”

“‘If you can’t be first in a category, then set up a new category you can be
first in’ is the second most powerful positioning idea.”

“The mind has no room for what’s new and different unless it’s related to
the old.”

The Ries and Trout positioning concepts were, in part, what led
Quickturn to choose the name “Emulation”. Quickturn’s Emulation

became the “first” in a new “chip design verification category”, and
Quickturn began positioning Emulation as it “compared to” simulation,
and FPGA prototyping – faster than simulation, and easier to deploy
than FPGA prototyping. Later, after Quickturn realized how difficult
Emulation actually was to set up and use when compared to simulation,
and after they had already established the Emulation category, they
doubled down and coined the phrase: “Damned hard, but well worth the

effort” – then they worked diligently to create compelling and plausible
ROI scenarios to defend the cost and effort of deploying Emulation, with

20

 Prototypical II

an emphasis on lost revenue attributable to delayed time-to-market
(TTM).

Figure 7: Lost Revenue Due to Delayed Time-To-Market

First Pentium Emulation

Getting back to the story about Intel’s “discovery” of Quickturn and their
new Emulation products – Intel was in the early stages of designing the
Pentium P5 processor, and the P5 project managers were desperate to
find new innovative ways to reduce the P5 verification effort. One of the
engineers assigned to the P5 verification team in the late 1980’s, Azam
Barkatullah, took this challenge to heart and on a sunny California day
he happened to be driving by Quickturn’s headquarters in Mountain
View, California, when he saw a Quickturn sign that caused him to stop
his car and go inside. Quickturn was still a young EDA company
struggling to establish itself in the EDA market. Azam met with
Quickturn’s management who explained how their new verification
technology might be applied to the P5’s daunting verification challenge
and reduce the TTM. Armed with RPM Data Sheets and a vision for “In-
Circuit Emulation” for more accurate system-level verification, Azam
returned to Intel to report the discovery to his management. Intel
quickly realized that if they could model the P5 in FPGA hardware, and
plug a hardware Emulation of the P5 into a real PC prior to silicon, they
could run real software on the Emulated P5 design – and they might be
able to substantially reduce the time it would take to get through a

 21

 Part I – Evolution of Design Verification Techniques Prototypical II

rigorous verification process faster and with fewer resources. Intel’s
Pentium CPU Validation Goals would eventually become: [17]

Ensure backward compatibility with previous generations of
processors.

Run real-world operating systems and applications pre-silicon to
validate the design.

Pentium project management arranged to meet with Quickturn
management to negotiate a deal to acquire enough RPMs for P5
verification, but at the time they didn’t know how many RPMs it would
take. A fully configured RPM at the time was expected to support about
150,000 “equivalent ASIC gates”, but the P5 had not been designed as an
ASIC – it was a full custom design, and the concept of equivalent ASIC
gates simply did not apply. Without any better options, Intel pushed
forward and eventually a business deal was struck on a “project basis”,
where Intel would pay a base project fee with milestone-based bonuses,
and Intel would get “as many RPMs as it took” to Emulated the P5.
Under the terms of the deal, Intel would not need to purchase more
RPMs than they needed at the start of the project, and they wouldn’t
need to negotiate the price of each additional RPM if they
underestimated the number of RPMs they needed at the start of the
project. Quickturn also knew that considerable marketing value would
be derived from successfully Emulating the P5 processor running
software while plugged into a real PC –prior to silicon.

A large part of Quickturn’s early differentiation story was that an
Emulated design could be connected directly to a real target-system, and
this would become a very compelling justification for adding Emulation
to a complex chip verification flow to reduce TTM. Quickturn would
claim that the only sure way to verify that a chip design would work in a
target-system prior to silicon was to connect the chip design to a real
target system with what was called “In-Circuit Emulation” (ICE). ICE

22

 Prototypical II

became a compelling value proposition for pre-silicon chip Emulation.
ICE was accomplished by connecting the Emulated chip design’s I/O
signals to one end of a flat multi-pin cable (or several cables), and the
other end of the cable would be “plugged into” a real target system
where the chip would eventually be plugged when the chip was available
in silicon. Of course, the Emulation would run slower than the real
silicon, but it was still orders of magnitude faster than simulation-based
verification, and it would run fast enough to sustain target-system
operation running real target-system software – prior to silicon tape out.
ICE would also provide the verification benefit that the target system
would, by its nature, subject the emulated chip design to real-world
stimulus, which is the ultimate determiner of functionally correct chip
operation.

Azam’s four-man emulation team mounted a heroic effort to get the P5
Emulation up and running on Quickturn RPMs with the expectation
that it would significantly reduce the P5 verification effort and accelerate
TTM (also referred to by Intel as “time-to-money”). Azam’s team worked
18-hour days converting the custom P5 design into synthesizable HDL,
partitioning the design into RPM-sized blocks, assigning the blocks to
RPMs, mapping the RPM interconnect to cables between the RPMs,
physically connecting all of the interconnect cables between the RPMs,
and connecting the cables for ICE to the target system.

Intel used a combination of Quickturn design tools and Intel design
tools to develop a design flow for transforming the P5 HDL description
into FPGA bit files that could be loaded into the RPMs with cables
connecting the RPMs. The P5 design was created in Intel’s proprietary
HDL, which at the time was not synthesizable. For silicon production,
Intel would hand-translate its proprietary HDL into a transistor layout,
but Intel’s proprietary HDL could not be used directly for RPM

Emulation – it needed to first be manually translated into a
synthesizable HDL. Azam’s team then partitioned the P5 design into

 23

 Part I – Evolution of Design Verification Techniques Prototypical II

blocks of logic that would fit into the RPMs, paying special attention to
the required RPM interconnecting cables. The team knew the Emulated
design implementation would be different from the P5 silicon design,
but they worked diligently to build the best possible adaptation of the
P5 design for Emulation that would be logically correct even if the
timing had to be manipulated to meet the constraints of the RPMs. For
example, some P5 embedded memories were implemented with
“hardware adapter modules” that used actual memory chips outside the
FPGAs, connected to the RPM backplane and then to the Emulated
design inside of the RPMs. The P5 design was organized into blocks and
the blocks were grouped together to create larger blocks with gate
counts that were expected to fit into a single RPM – it took 7 RPMs for
integer operations, 4 for caches, and 3 for floating point. Then the
interconnect signals between the RPM design blocks were assigned to
flat ribbon cables that would be connected between RPM’s. It would
eventually take 14 RPMs arranged in a U-shape, with half of the RPMs
sitting on top of the lab tables, and the other half of the RPMs on the
floor under the lab tables. Unwieldy as it appeared, the U-shaped RPM
arrangement proved to be the optimal scheme for connecting the many
cables that would be required between the 14 RPMs. Try to imagine 14
RPMs, stacked two high on the P5 lab tables arranged in a U-shape with
a “pile” of dozens of flat ribbon cables crisscrossing the lab floor between
the RPMs – later we’ll reflect on this image to imagine an Emulation of
Intel’s next Pentium processor, the P6.

When the P5 design needed to be changed during the verification/debug
process, and it was certain that it would need to be changed, the affected
Emulation blocks would need to be recompiled (HDL to FPGA
programming bit files) and, if the design change affected the RPM
cables, the Emulation cable connections would need to be changed. That
is, cables needed to be carefully disconnected from one RPM and
reconnected to another RPM. Changing cables between RPMs made P5

24

 Prototypical II

Emulation changes slow and error-prone. Eventually, as the P5 design
stabilized during the debug process, fewer changes were required to the
Emulation. The cables would also limit the Emulation speed because of
the signal propagation time across the cables between RPMs. The final
P5 Emulation speed was eventually arrived at by “trial and error” –
timing analysis was rudimentary at the time – and the Emulation clocks
were simply turned down to about 300KHz until the functionality was
correct.

It took Azam’s team 4 to 5 months to get the P5 Emulation to a state
where they could boot the DOS operating system and run software
applications on a real target PC. In November of 1991, Albert Yu, an Intel
VP at the time, was attending a forum for PC companies and software
developers, and he “dialed into” (remember dial-up modems?) Azam’s
Emulation lab and ran a Lotus 123 spreadsheet application on the P5
Emulation from a remote terminal. The forum attendees were
astonished that a P5 model was already working. It was said that
Compaq Computer Corporation was planning to switch to a RISC-based
PC at the time, but six months after the Albert Yu presentation at the
November forum, Compaq scrubbed their plans to switch processors.
The P5 Emulation was considered a success. The P5 Emulation team
identified at least one critical design bug prior to tape-out, the first tape
out of the P5 was functional (although not at speed), Albert was able to

impress a crowd of product developers and potential customers with a
demonstration of early P5 design maturity that may have saved at least
one considerable business deal for Intel, the P5 Emulation was credited
with shaving “a few months off the P5 production ramp” leading to a
timely release of the Pentium processor in March of 1993. [18] And,
Quickturn had a legend-worthy Emulation success story that they would
use to encourage countless other prospective Emulation customers to
invest in Emulation.

The P5 story was such a clear success that any reasonable observer

 25

 Part I – Evolution of Design Verification Techniques Prototypical II

would have assumed that Intel would have gone on to repeat the P5
success on the P6 project. Well – Intel did engage Quickturn again to
Emulate the P6, but the P6 story had a very different ending than the P5
story. Earlier in this section, the reader was asked to imagine 14 RPMs,
stacked two high on the P5 lab tables arranged in a U-shape with a “pile”
of dozens of flat ribbon cables crisscrossing the lab floor between the
RPMs. When Intel moved to Emulate the P6 design, they realized that
the Emulation technology of the day was not scaling at the same pace as
their processor complexity. The P6 design was about four times the gate
complexity of the P5 design. The P6 Emulation required more than 40
RPMs, and dozens more interconnect cables between the RPMs! The P6
Emulation build took much longer, design changes were much harder,
and it was not credited with the pre-silicon discovery of any critical
bugs. Intel discontinued Emulating processor designs after the P6.

Enabling Exploration and Integration

The Quickturn RPM, implemented with standard Xilinx FPGAs, was the
first commercial hardware emulator and became an essential ASICs
prototyping tool for well-funded companies. Following Quickturn’s
success with Emulation, more advanced hardware emulators and FPGA-
based prototyping platforms were developed – and they took divergent
paths for different use cases.

Hardware emulators evolved to be highly automated, and only
affordable for large chip projects and broader application for multi-user,
multi-design projects. A user need not know the details of the logic
implementation, or how internal design interconnects are organized on
the hardware. A netlist for an ASIC is loaded by the Emulation software,
chopped into arbitrary partitions, and the partitions are spread out
across the hardware – implemented with tens or hundreds of devices.

These partitions are subject to a relationship known as Rent’s Rule,

26

 Prototypical II

describing an empirically determined ratio of logic gates to interconnect
pins. As general purpose FPGA logic capacities increased, FPGA pin-
count growth did not keep up and retain interconnect limitations got
worse for arbitrary partitions of a design, requiring even more FPGAs to
accommodate large netlists. Eventually, emulator providers moved from
FPGAs to ASIC-based designs. The price of tossing more hardware at the
problem is steep, however – today’s high-performance hardware
emulators can cost over $1M.

FPGA prototypes are more design specific, and often configured and
tuned for a specific project. Assuming adequate logic capacity and
interconnect pins, a design can be synthesized for a single FPGA device,
or perhaps partitioned across a handful of devices with optimized
interconnect between the devices. Rent’s Rule becomes more
manageable for a design of moderate size. This is the basic premise of
FPGA-based prototyping, which gives the appearance of becoming more
and more attractive as FPGA logic capacities improve. [19]

Figure 8: FPGA gates versus pin count, courtesy Cadence

What really makes the case for FPGA-based prototyping is not a change

 27

 Part I – Evolution of Design Verification Techniques Prototypical II

in FPGAs, however, but changes in system design practices and
objectives. The type of design starts typically in the industry evolved
dramatically, looking less often like an enormous Intel microprocessor.
System-on-chips, microcontrollers, application-specific standard
products (ASSPs), and other designs take advantage of a growing field of
IP for customized implementations.

Reuse and integration are now paramount. Stand-alone verification of

individual IP blocks is cost-effective using FPGA-based prototyping.
Third-party IP, existing internally designed IP blocks, and new internal
development can then be combined, with partitioning and test artifacts
reused to aid in the process.

Design exploration is feasible, especially for software teams that can
afford to provide FPGA-based prototyping platforms to lots of
developers. What-if scenarios run at the IP-block level can explore

software tradeoffs or minor hardware architectural tradeoffs, not just
functional fixes. These results can be rolled up quickly to the full-up
design, perhaps resulting in a critical product pre-silicon enhancement.

More FPGA-based prototyping platforms are integrating actual I/O
hardware, usually with a mezzanine-based approach, instead of
emulating I/O with a rate-adapter of some type. This is an important
factor for complex interface and protocol verification. It can also be a
deciding factor in safety-critical system evaluation, where validation
using actual hardware is essential.

At the high-end, FPGA-based prototyping is scaling up. Platform-aware
synthesis is improving partitioning across multiple FPGAs, allowing
larger ASIC designs to be tackled. Cloud-based technology is connecting
platforms and developers via the internet. Debug visibility is increasing,

with approaches including deep-trace capture and automatic probe
insertion. Integration with host-based simulation and graphical analysis

28

 Prototypical II

tools is also improving steadily.

The inescapable conclusion is, if a chip project is to “start”, it had better
finish with robust silicon quickly. New applications, particularly the
Internet of Things, may reverse a trend of declining ASIC design starts
over the last decade. Design starts are likely to be smaller and more
frequent, with highly specialized parts targeting niche markets.
Advanced requirements in power management, wireless connectivity,

and security are calling for more intense verification efforts.

FPGA-based prototyping, as we shall see shortly, is rising to these
challenges for a new era of chip design.

 29

 Prototypical II

Part II - FPGA Prototyping for Different
Design Stages

30

 Prototypical II

Design Exploration

It is common wisdom today that early discovery of design problems
during product development reduces the cost to fix the problems –
especially with complex SoCs. It is also common wisdom that the cost to
fix problems increases by 10x or more after silicon implementation and
increases another 10x when the product gets into the hands of
customers. These cost factor increases are most certainly understated for
high-volume or high-priced products. The challenge of early problem
discovery is amplified by rapidly increasing SoC design complexity and
cost, high software content, and the declining TTM tolerated by
competitive markets. Consequently, the pressure on electronic system
designers to get it right early has never been higher – and can only get
more intense. These considerations led to the definition of the term
Electronic System Level design, or ESL Design, by Gartner Dataquest in
2001. [20] The term was defined as "the utilization of appropriate

abstractions in order to increase comprehension about a system, and to
enhance the probability of a successful implementation of functionality
in a cost-effective manner." [21]

SoC-based designers are highly incentivized to model key system
capabilities to verify key system parameter targets such as performance,
power, silicon area, and functionality – early in the development process
and at a high level of abstraction. These design abstractions are

implementation-independent, consider system-level dependencies, can
focus on isolated critical aspects of the design, are easy to refine (low
effort), and the added verification complexities of implementation
details are deferred until later in the development process. Many of the
key system parameters are locked in by early architecture decisions and
cannot be changed significantly after a certain point in the
implementation process. As the design matures, additional levels of
implementation detail are added to the process, solidifying parts of the
design, and increasing the “weight” of the design (effort needed to

 31

 Part II – Design Exploration Prototypical II

change) as it converges (hopefully) to the final product. During this
design maturation process, critical sections of the design may be
modeled using familiar design verification tools that would not normally
be expected to come into play until later in the development process –
such as FPGA prototyping. Algorithm performance, video imaging QOR,
and network throughput are examples of where FPGA prototype
modeling is finding increasing use in ESL.

Thus, the importance of design exploration during early product
definition is considered by some to be the most critical stage of any
development project – in which optimizations of the architecture are the
least costly to realize in time and effort. ESL Design allows system
architects to play “what-if” games with system partitioning and quickly
evaluate different implementation alternatives – which parts should be
implemented in hardware and which parts should be implemented in
software. According to a 2018 article in Semiconductor Engineering; [22]
“The architecture space was, is, and always will be, a relatively small
number of users that use every tool in their arsenal, with Excel being
probably the most used.” The article goes on to assert, “The classic
architecture analysis dilemma remains an issue: decisions must be made
as early as possible to be effective; and to make effective architecture
decisions, architects would like the accuracy of models that are only
available once the implementation is decided.” The article continues;

“As a result, there is a clear bifurcation in the architecture space with
very abstract models that are used pre-implementation on the one hand
(using languages like The Mathworks M or graphical definitions like in
National Instruments LabView) and cycle-accurate representations in
RTL or SystemC on the other.”

32

 Prototypical II

Figure 9: MatLab Parallel Computing Toolbox

So it is that classic hardware verification tools such as FPGA
prototyping, together with transaction-level testing, are increasingly
finding their way into the Design Exploration space for architecture
optimization decisions. Again, from the Semiconductor Engineering
article about ESL Design: “The products in this space simply bridge the
classic verification space into the system level—one could argue by
‘brute force’. You want to boot an operating system like Android or
Linux, and you need the hardware implementation detail, hence cannot
use abstraction? Here, use my emulator or FPGA-based prototype that
runs in the MHz or 10’s of MHz range, respectively, compared to the Hz
or low KHz range in host-based RTL simulation that would take weeks
to boot the OS. This area is somewhat of a gray space because the
primary use of emulation is hardware verification, and the primary use
of prototyping is software development—but the lines are blurry as
emulation extends into software, especially with virtual-platform-
emulation hybrids, and prototyping extends into hardware verification
for regressions once the RTL gets more stable.”

To facilitate early Design Exploration, ProtoBridge from S2C provides a
high bandwidth data channel between software models running on a

 33

 Part II – Design Exploration Prototypical II

host PC and the FPGA prototyping hardware. ProtoBridge consists of C-
API for users, software drivers for the host PC, PCIe-based connectivity
hardware between the host PC and the Prodigy Logic System, and a
PCIe-to-AXI bridge to interface with the user design blocks.

Figure 10: S2C ProtoBridge solution

In August of 2020, S2C announced a collaboration with Mirabilis Design
to deliver a hybrid SoC architecture exploration solution that reuses
available RTL-based blocks to accelerate model construction and
complex simulations. Mirabilis Design’s VisualSim interfaces with S2C’s
FPGA Prototyping solution, Prodigy Logic System, to model a functional
block of the design in which the FPGA prototype acts as a sub-model
and provides accurate simulation responses for architecture exploration.
The collaboration enables the RTL behavior modeled through FPGA
prototyping, to be easily integrated into an ESL model to create a virtual

34

 Prototypical II

platform. The model can be simulated to gather metrics on response
times, throughput, power consumption, and correctness of data values.

Figure 11: VisualSim Modeling, Simulation, Exploration and Collaboration

 35

 Part II – IP Development Prototypical II

IP Development

Brief History

Semiconductor Intellectual Property (IP) may be defined as “a reusable
unit of logic, cell, or integrated circuit layout design that is the
intellectual property of one party. IP cores can be licensed to another
party or owned and used by a single party.” [23] While IP licensing
became a common practice in the 1990’s, the development and the use
of IP by companies developing ASICs and SoCs for its own internal use,
or as a paid service to other companies, or by semiconductor foundries
to enable customer wafer production, has been around much longer.

The conceptual benefits from IP reuse were identified early by a few
prescient technologists at large electronic companies (HP, Sun
Microsystems, etc.) well before the commercial IP market enjoyed the
vibrance that it does today. Internal company standardization of certain
IP blocks was seen as an opportunity for improved ASIC development
efficiency across multiple internal ASIC projects developing its own
versions of essentially the same functionality – at the same time with
little or no cooperation between the projects. As an added benefit,
standardization and reuse would assure compatibility between all the
company’s different implementations of the same IP functionality
(incompatibility between different internal development efforts of the
same IP functionality in the same company actually occurred!). As an
interesting historical note, and as is often the case when large companies
try to standardize design practices, there were inefficiencies associated
with early IP standardization efforts which tried to impose an IP reuse
standard interface on all internally developed IP (to assure easy reuse by
all internal projects) before the IP was allowed to be added to the
company’s IP library. It was a well-intended and conceptually valid
constraint, but the internal IP user community resisted adoption
because of the area and performance penalties associated with the

36

 Prototypical II

company-imposed IP reuse standard interface itself.

One EE Times article attempted to simplify the essence of
Semiconductor IP with a few rhetorical questions and answers:

“Question: What is the central issue facing the system-on-chip chip
design community? Answer: Design costs.

Q: How to cut costs? A: Design reuse.

Q: What is the challenge of design reuse? A: Intellectual-property
verification.” [24]

We will return to the topic of IP verification later. However, this nod to
IP verification reflects the criticality of well-verified IP to unlocking the
potential value that Semiconductor IP can bring to SoC developers.

IP Market

According to a report by MarketsandMarkets, the global Semiconductor
IP market is estimated to be $5.6 billion in 2020 and projected to reach
$7.3 billion by 2025. [25] The report cited the “Key factors fueling the
growth of this market include the advancement in multicore technology
for the consumer electronics industry, increasing demand for modern
SoC (system on chip) designs, mitigation of the continuously rising chip
design cost and expenditure, growing adoption of connected devices for
daily use, increasing demand for electronics from healthcare industry
due to COVID-19, and increasing demand for teleconference
instruments amid the COVID-19 pandemic.”

Another report by Verified Market Research projects similar numbers
for the Semiconductor IP Market size, pegged at $5.3 billion in 2019,
growing to $7.4 billion by 2027. “Various factors that are driving the
growth of the Semiconductor IP Market are growing production of

mobile devices and use of electronic devices such as smartphones and
tablets. Also, risen (sic) demand of modern system on chip (SoC) design

 37

 Part II – IP Development Prototypical II

and reduction in design and manufacturing cost is boosting demand for
Semiconductor IP Market.” [26]

Figure 12: Global Semiconductor IP Market, 2020-2027

A third report published by Polaris Market Research is a little more
aggressive and anticipates the Semiconductor IP market will be $9.3
billion by 2026. [27] “Rising demand for modern System on Chip (SoC)
design, and growing need to reduce manufacturing and design cost
boost the Semiconductor Intellectual Property market growth.
Advancement in multicore technology for consumer electronics further
supports the growth of the Semiconductor Intellectual Property market.”
[28]

Semiconductor IP is generally categorized by functionality: processor
(ARM, RISC-V, Arc, Tensilica, etc.), foundation IP (memory, standard
cells, etc.), on-chip interconnect IP (AMBA, NoC, etc.), standards-based
interface IP (PCIe, USB, DDR, HDMI, MIPI, etc.), video CODEC IP, and
analog and mixed-signal IP (PLL, ADC, DAC, PHY, etc.).

Today’s commercial IP market is dominated by a few large EDA
companies, which offer a rich selection of pre-tested, off-the-shelf IP.
According to a June 2019 Design & Reuse article, the top 6
Semiconductor IP suppliers were expected to dominate the commercial
IP market in 2019 (by revenue); Arm Holdings (40.8%), Synopsys.

38

 Prototypical II

(18.2%), Cadence (5.9%), SST/Microchip (2.9%), Imagination
Technologies (2.6%), and Ceva (2.2%) – with these 6 IP suppliers
expected to account for over 70% of the 2019 commercial IP market. [29]

Figure 13: Semiconductor IP Suppliers by Revenue, Worldwide, 2018 and 2019 (Millions
of Dollars)

While the revenue figures from these commercial IP supplier reflect the
level of investment in commercial IP by SoC developers, they do not
comprehend the investment by large fabless semiconductor companies
that are developing their own IP for internal use on their own SoCs (e.g.
Intel, Broadcom, Marvell, Qualcomm, etc.). Combining the commercial

IP market with what is surely a huge internal investment in IP by large
fabless semiconductor companies, it is abundantly clear that
Semiconductor IP has become critical to the timely delivery of
competitive SoCs – driven by the need to mitigate rapidly rising SoC
development costs and complexities by leveraging large blocks of proven
IP to reduce TTM, and focus SoC development efforts on core
competencies for product differentiation.

Soft and Hard IP

Soft IPs are delivered as synthesizable RTL models or synthesized gate-
level netlists. The IP supplier will usually include some verification aids
with the Soft IP to assist the user with verifying the functional behavior
of the IP, and sample scripts to assist the user in synthesizing the Soft IP
into a physical implementation – a process called “IP hardening”.
Generally, digital logic functionality is delivered as Soft IP (RISC-V
processor cores, PCIe controllers, DDR controllers, etc.). A notable

 39

 Part II – IP Development Prototypical II

exception is “foundation IP”, a category of digital functionality which
includes memories and standard cell libraries, and this soft IP comes
with soft views (abstract representations of memories and gates), and
hardened views (more on this later) of the functionality. Most digital
SoCs are composed primarily of memories and standard cell libraries, so
this category of Soft IP is critical to the fabrication of any SoC and is
fundamental to the verification of any Soft IP.

Prior to hardening, the Soft IP will be integrated into the complete SoC
by the IP user, eventually at the gate-level, and the SoC will be
rigorously verified for correct functionality, performance, and power
consumption. SoC verification at the gate-level for performance, power,
and area can produce highly accurate results because the gates that are
used for hardening will have been derived from a foundry-specific IP
library (foundation IP) that has been characterized for that specific
foundry, a foundry-specific process node (20nm, 16nm, etc.), and a

foundry-specific process variant (high-performance, low power, etc.).
Some IP only has internal SoC connections (DMA controllers, PICs,
AMBA, etc.) and must only be verified for correct internal SoC
functionality. Other IPs having internal SoC connections and
connections to the system outside the SoC require system-level
verification.

The Soft IP gets hardened together with the rest of the SoC when the

SoC is synthesized by the IP user into a physical silicon implementation
– meaning that the gates (and memories, etc.) are converted to physical
silicon transistors (also called “polygons” for the shape of the layered
elements that comprise each transistor in silicon), and the interconnect
wires that connect the gates, memories, etc. After the hardened SoC is
verified, it undergoes additional physical verification for compliance
with the foundry’s process design rules. At the end of the hardening

process, the SoC design is converted to another format (GDSII) that is
used to produce “masks” for manufacturing the SoC in silicon, and a

40

 Prototypical II

mask set (40 to 50 layers at 28nm, while 5nm could have 100 layers [30])
for an advanced silicon process will cost millions of dollars for each
mask set.

Another advantage of Soft IP is that it can be targeted by the IP user for
any foundry processes (depending on available foundation IP) by
synthesizing the SoC with foundry-specific foundation IP and going
through the hardening process. Some large electronic companies have

developed “portable libraries” that enable the same design to be
fabricated by multiple foundries to assure continuous production supply
in times of high silicon demand (also referred to as “multiple foundry
sourcing”). The portable libraries approach has encountered some
isolated glitches – occasionally, subtle differences would be discovered
between foundation IP from different foundries (e.g., drive strengths)
that would delay, or outright prevent, targeting the design for a specific
multiple foundry source alternative.

Hard IP, unlike Soft IP, will have already been hardened by the IP
supplier before it is delivered to the IP user. Generally, analog and
mixed-signal functionality are delivered as Hard IP (SERDES, PCIe
PHYs, DDR PHYs, PLLs, ADCs/DACs, etc.). Hard IP has been optimized
by the IP supplier for performance, power, or area and will have been
characterized over multiple “process corners”, for the targeted foundry
process. According to João Geada, chief technologist at ANSYS, from a
Semiconductor Engineering article, “The foundry doesn’t produce exact
copies of transistors or chips. It’s not an exact process. There’s some
random variability. To a certain extent, that’s kind of hard to deal with
from an engineering point of view. Process corners are, in a way, an
attempt to put the bound on what comes out of the foundry – what’s the
fastest something can happen, what’s the slowest, what’s the worst
power, what’s the least power? There are multiple dimensions that you

need to take into account, but you’re trying to basically put a box around
what will come out [of] the foundry; the corners are the edges of that

 41

 Part II – IP Development Prototypical II

box.” The article asserts that “The number of corners that need to be
checked is exploding at 7nm and below, fueled by everything from
temperature and voltage to changes in metal.” [31]

Unlike Soft IP, Hard IP cannot be targeted by the IP user for a different
foundry process. Some large consumers of silicon with close foundry
relationships will go to great lengths to get the earliest possible start
with the newest foundry process. They do this by designing with the

foundry’s pre-production release silicon characterization data
(sometimes referred to as “guess numbers”), schedule their final SoC
production tape-out to coincide with the later release of the final
production silicon characterization data, have the IP supplier re-
characterize the IP with the final characterization data ASAP, and re-run
final physical verification on the SoC design just before tape-out.
Usually, the differences between the “guess numbers” and the final
production characterization data are inconsequential – so everything
goes as planned – usually.

IP Verification

So, what’s all the fuss about IP verification? Well, it's fundamental – it's
foundational – it's critical to the realization of the two primary benefits
of Semiconductor IP:

 the mitigation of soaring SoC development costs in the face of
rapidly increasing design complexities, and

 the reduction of TTM in highly competitive markets.

Although much of the IP verification burden will be borne by the IP
supplier before the IP ever reaches the IP user, the ultimate authority of
correct IP operation is the SoC user – the IP must be verified stand-
alone, when integrated into an SoC, and when the SoC fabricated in
silicon and operated in the end-product. So, IP verification is performed
by the IP supplier and the SoC developer in cooperation with the end-

42

 Prototypical II

product supplier. In some cases, the SoC developer and the end-product
supplier are the same company (Apple, Cisco, etc.). In other cases, the
SoC developer does not make the end-product and must work closely
with the end-product supplier to complete SoC verification (Intel, AMD,
Marvell, Broadcom, etc.).

The available EDA tools used for IP verification today support a wide
range of IP and SoC abstractions during IP development, including ESL

modeling, software simulators, stimulus generators, verification IP
(VIP), formal verification, emulation, and FPGA prototyping. [32] The
EDA tools at each stage of IP development are under tremendous
pressure today to enable SoC developer’s ability to:

 run more cycles of operation, and

 subject the SoC design to end-product like operating conditions.

FPGA prototyping is emerging as a critical and cost-effective method to
achieve both. S2C has specialized in FPGA prototyping solutions for
almost two decades and has evolved its complete verification platforms
to scale from semiconductor IP and small SoC verification, to billion
gate SoC verification platforms.

S2C offers a range of FGPA hardware platforms supporting Single-FPGA,
Dual- and Quad-FPGAs with its Logic Systems – to more than a hundred

FPGAs with its Logic Matrix.

Figure 14: Side View of S2C’s Quad Prodigy Logic System (4 FPGAs)

 43

 Part II – IP Development Prototypical II

S2C’s Prodigy Prototyping Solutions can be configured to model a stand-
alone IP block, an IP block together with associated VIP, a complete SoC
containing the IP blocks that can be operated at hardware speeds. S2C’s
rich library of Daughter Cards is “snap-together” attachments to the
Logic Systems to quickly implement system interfaces so the user can
model in-system operations.

Figure 15: Prodigy Daughter Card Interface IPs

In addition, ProtoBridge, described earlier in this book, is also very
handy in linking the FPGA prototyping platform to software platforms.

These software platforms can be cycle-level RTL simulators or
transaction-level virtual prototyping platforms. When in-depth RTL
design verification is required, users connect the RTL simulator with the
FPGA prototyping platform through ProtoBridge to accelerate cycle-
level simulation. When RTL design has been verified and is ready for
software development, users can then combine the virtual prototyping
platform and FPGA prototyping platform for software development.
Moreover, together with the aid of daughter card interface IP, which
allows the RTL design in the FPGA to connect with real-world devices,

44

 Prototypical II

the design team can complete the IP design and verification tasks from
RTL level to system level on a single FPGA prototyping platform.

 45

 Part II – Hardware Verification Prototypical II

Hardware Verification

Introduction

Some say hardware verification is the process of verifying that a given
hardware design correctly implements the specification. [33] Others say
that hardware verification is verifying that a hardware design operates as
intended (in the system). As SoC-based system products have become
more silicon and software-intensive, and as competitive markets
continue to drive down TTM in the face of growing complexity and cost,
SoC developers are being forced to incorporate hardware

verification/validation methods that consider the bigger picture – “Did I
design the right product”? [34]

In practice, hardware verification/validation means different things to
different people. If you are developing an SoC for a system company, it
means verifying that your own company’s systems operate as expected
by your company’s customers. If you are developing an SoC for a chip
company, it means verifying that systems produced by a variety of
system companies using the SoC (your customers) operate as expected
at their respective end-customers – and, it may not be known by the SoC
developer, how all systems companies will connect and use the SoC, a
very different verification proposition than what is faced by a system
company developing SoCs that will only be used in its own systems. To
reduce the risk of silicon failure, SoC developers commonly work closely
with select system developer partners to know what it means for the SoC
to operate as expected by the end-user. SoC developers at leading chip
companies will go to extraordinary lengths to provide early prototype
platforms to their select system developer partners to assure correct
system operation during the early stages of the SoC development
process – sometimes by providing hardware models implemented with
FPGA prototypes. So it goes, the SoC developer focuses on designing the
product right, then co-works with select system developer partners to

46

 Prototypical II

assure that they are designing the right product – and together they
agree on what is expected from hardware verification.

Because so much of electronic system functionality today is being
implemented in silicon, and the total cost of silicon failure continues to
escalate, SoC developers and EDA suppliers strive to optimize tools and
methodologies to collapse the SoC development process to enable SoC
developers to verify working silicon designs in the system – before
silicon is available. This thinking was promoted by a decades-old vision
for pre-silicon in-system verification that was popularized by early
hardware emulation called in-circuit emulation, or “ICE”.

Figure 16: Early In-Circuit Emulation [35]

Lost In Translation

Nevertheless, we are getting a little ahead of ourselves. Somewhere in
the hallowed halls of great system companies lurk the uniquely prescient
minds that conceive blockbuster electronic product ideas. Products that
will sell hundreds of millions of copies (e.g., Apple) or produce billions
of dollars of revenue with fewer copies (e.g., Tesla). [36] Steve Jobs was
quoted as saying, “People don't know what they want until you show it
to them. That's why I never rely on market research. Our task is to read

 47

 Part II – Hardware Verification Prototypical II

things that are not yet on the page.” [37]

Whether derived from market research, or the Steve Jobs approach to
new product development, new product ideas must cross a chasm from
vision to reality – and there will be layers of specification translations
between the two. Architecture Specifications, Marketing Requirements
Documents (“MRDs), Product Requirements Documents (“PRDs”), C-
code models, HDL, etc. It should come as no surprise that some things
will inevitably get lost in translation. This malady applies to clean-sheet

new products, as well as evolutionary products developed as incremental
derivatives of existing products. Phil Kaufman (CEO of Quickturn
Systems in the 1980s) would say that a product’s User Manual should be
written first – and all other requirements documents should be derived
from the User Manual. This strategy has the goal of first establishing
how the product should work from the user’s point of view, and then the
product requirements would be elaborated in subsequent hardware,

software, and system requirements documents to achieve the goal.

Given all the specification translation complexity, TTM pressure, and
escalating SoC cost, it’s no wonder that product developers, SoC
developers, and EDA companies continue to push for better ways to
close the product development loop from vision to reality earlier in the
product development cycle. It is the high-pressure context of today’s
hardware verification.

Unknown Unknowns

SoC developers are handed a “script” in this grand scheme of product
development, usually in some form of a PRD. A PRD is also provided to
system and software developers and silicon bring-up engineers – and a
symphony of coordinated efforts is begun by the team of stakeholders to
produce a working product. SoC developers are asked to produce

working silicon and cooperate with the other stakeholders along the
path to committing the SoC to silicon. So, today’s SoC developers make

48

 Prototypical II

every effort to comprehend the scope of how to test the SoC to confirm
that they will produce the right product.

At some point in the SoC development process, the design is translated
from the PRD into an HDL interpretation of the functionality that will
eventually be used to produce the silicon – then they set about to prove
(verify) that their HDL describes the product right, and in parallel, they
must also plan to assure that they are designing the right product.
Starting with the known knowns, SoC developers must eventually
consider the known unknowns, and unknown unknowns – terms
popularized by Donald Rumsfeld (yes that Donald Rumsfeld!) in a US
Defense Department news briefing in 2002; [38]

 There are known knowns - these are things we know we know.

 We also know there are known unknown - that is to say we know
there are some things we do not yet know.

 But there are also unknown unknowns - it is this latter category
that tends to be the difficult ones.

“Rumsfeld's statement brought fame and public attention to the
concepts of known knowns, known unknowns, and unknown
unknowns, but national security and intelligence professionals have long
used an analysis technique referred to as the Johari Window. The idea of
unknown unknowns was created in 1955 by two American psychologists,

Joseph Luft (1916–2014) and Harrington Ingham (1916–1995), in their
development of the Johari window.” [39] The Johari Window concepts
may also be applied to hardware and SoC verification, and SoC
developers knowingly or unknowingly apply these concepts to hardware
and SoC verification. Known unknowns in SoC verification refers to
“risks you are aware of.” Moreover, “unknown unknowns are risks that
come from situations that are so unexpected that they would not be
considered”. In the context of today’s hardware and SoC verification
complexities, and considering the high portion of the total SoC

 49

 Part II – Hardware Verification Prototypical II

development effort that is devoted to verification, it is clear why
designers are constantly seeking better ways to include more real-life
end-system operation of SoC designs as early as possible in the
development process. Formal verification and randomized testing are
approaches to uncovering known unknowns and unknown unknowns.
These approaches advance the SoC verification process but still leave
areas of uncertainty in a domain of virtually infinite possible
combinations.

Figure 17: The Johari Window Model [40]

FPGA Prototyping

The need to accelerate design verification beyond software-based
simulators inspired the three founders of Quickturn Design Systems
(Quickturn) to develop a radical new hardware-based solution to
address the chip verification needs of the late-1980s – and they named it
“Emulation.” The three Quickturn founders, Michael D’Amour, Steve
Sample, and Tom Payne, were EDA veterans from Daisy Systems and
Silvar-Lisco – and it should come as no surprise that Tom Payne’s

expertise was partitioning. The three founders were no strangers to the
verification challenges facing chip designers of the day – and their

50

 Prototypical II

inspiration was driven by two key elements;

 Build a box with multiple Field Programmable Gate Arrays
(FPGAs) that behaved as a “sea of gates” that would model any
chip design for operation at hardware speeds, and

 Provide an “umbilical cord” from the modeled chip design to a
“target system” – which they would call In-Circuit Emulation, or
“ICE”.

Quickturn’s emulators aimed squarely at the two chip verification needs
of the day; 1) chip design verification running much faster than
simulation, and 2) in-system operation of the modeled chip design as
the ultimate test of chip design correctness – with real system interfaces
connected to, and real software running on, the emulated chip design.
Quickturn’s compelling ROI proposition was that ICE would allow chip
and system designers to “collapse’, or “shift left”, their chip development
schedules and harvest substantial economic benefits from faster TTM.
[41]

Figure 18: Concurrent Design Flow

Today, emulation is widely used by chip designers to verify chip designs

before tape-out to silicon, and emulators still run much faster than
software-based simulators – but, not surprisingly, emulators are still not

 51

 Part II – Hardware Verification Prototypical II

fast enough for some to keep pace with increased chip design
complexity, and too costly for others. Modern emulators are loaded with
well-intended evolutionary infrastructure that automates chip design
mapping into the emulator (including incremental design changes),
provides high design visibility for near-simulator debug, connection to
virtual models of portions, or all, of the target system, and supports
billion-gate chip designs – and they come with eye-watering price tags.

In the early days of emulation availability for chip verification, some
chip designs still required FPGA prototyping – even though early
emulation was virtually an FPGA prototype wrapped in a modest
amount of EDA automation. For example, wireless chip design
prototypes needed to be driven around in vehicles to test radio
operation in the shadows of underpasses, hills, and large buildings – big
emulation boxes were not portable enough. Similarly, electronic medical
device prototypes needed to be carried around by real people to test

artifacts caused by body movements. These chip designs were better
suited to prototyping in a smaller footprint with a single FPGA. This
realization leads to Quickturn positioning its emulation as a chip
verification methodology that was “between” simulation and FPGA
prototyping in the spectrum of available chip verification methods –
Quickturn did not try to replace FPGA prototyping where prototyping
was a better fit.

So, it is no surprise that many of today’s chip designers are still looking
to FPGA prototyping for yet faster chip design verification. In the very
beginning, emulators were not much more sophisticated than today’s
FPGA prototyping products – Quickturn’s first emulator would only
support about 25K gates in each emulator box, did not have built-in
timing analysis (imagine having to manually insert additional logic gates
to add delay as a fix for timing problems!), and debug support was
meager. To those who experienced early emulation and are still involved
with SoC development – well, they are probably scratching their heads

52

 Prototypical II

and thinking, as Yogi Berra once famously wisecracked, “It’s like déjà vu
all over again.”

FPGA prototyping as a verification method is being applied today to a
broad spectrum of chip design types from monster 5G baseband
processor designs to smaller wireless designs that fit into a single FPGA
– and a plethora of chip design types in between. Some chip designers
are driven to FPGA prototyping because they have a “need for speed”,
while others are driven by a need to enable access to early hardware
models of chip designs by dozens of software development team
members so they can run software on the chip design before tape-out to
silicon (even smaller chips can have extraordinarily complex design
verification needs). To address today’s diverse chip design types,
suppliers must offer complete FPGA prototyping solutions that address
the five pillars of FPGA prototyping;

 Automate FPGA design mapping with flexible FPGA interconnect

 Run orders of magnitude faster than simulation/emulation

 Facilitate in-system-like operation

 Provide for effective debug

 Keep the cost affordable

The Prodigy Player Pro is a tool that works with the FPGA-based
prototyping platforms from S2C. It integrates three development
processes into one – it configures the prototyping, runs remote system
management, and provides set-ups for multi-FPGA debugging. Such an
integrated solution alleviates the pain of tackling the complex FPGA
flow and plays a significant role in the FPGA prototyping methodology.

 53

 Part II – Hardware Verification Prototypical II

Figure 19: S2C’s Prodigy Player Pro – Cockpit for prototype design and multi-debug set
up

Design Partitioning for FPGA Prototyping

When an SoC design must be partitioned into multiple FPGAs to build
an FPGA prototype, design partitioning adds complexity to the FPGA
prototyping effort. Design partitioning adds to the first FPGA prototype
bring-up effort, it adds to the time needed to update the prototype with
design fixes, and it adds the complexity of maintaining good prototype
visibility for debugging. While it is estimated that more than half of SoC
designs will require multiple FPGAs to prototype, [42] the benefits of
accelerated software development before silicon are so compelling that
many experienced SoC developers are not deterred by the added
complexity of design partitioning.

Design partitioning has been one of the guiding implementation
considerations for multi-FPGA prototyping since – well, since early
emulators were implemented using FPGAs. Rent’s Rule describes an
empirical relationship between pins per logic block and the number of
gates in the logic block, and FPGAs have never had enough I/O pins to
satisfy Rent’s Rule. As it has played out, Rent’s Rule has led to a host of
unnatural design acts to get around the pin limitations of early FPGAs.

To complicate the partitioning impact on prototyping, logic density will
follow Moore’s Law, but packaging and pin counts will not – the growth

54

 Prototypical II

in the number of FPGA I/O continues to lag the growth in FPGA logic.

However, maybe there is a glimmer of hope – system design modules
naturally have smaller pinouts than arbitrary partitioning cuts, and
Rent’s Rule does not apply to SoC design modules (“Well, yes it does but
weakly.”). The implication of this is that, as the logic density and
packaging technologies of the newer FPGAs continue to advance, FPGA
logic and I/O pins will reach a point where any SoC design module will
fit within a single FPGA – where automated user-guided partitioning
may lead to simplified multi-FPGA prototyping, at least for the
partitioning part of the prototyping effort.

Figure 20: Automated User-guided Partitioning

Besides, thanks to the rapid evolution of SERDES technology, time-
division-multiplexing (TDM) is frequently adopted to overcome the
FPGA pin count shortage issue. With such methodology, multiple design
signals are consolidated and transmitted through one FPGA pin and
reassembled at the receiving side into their original format. In this way,
we can save hundreds or even thousands of FPGA pins and finish the
partition work more efficiently.

 55

 Part II – Hardware Verification Prototypical II

Expanding Prototyping Solutions

Today’s FPGA prototype suppliers deliver on the promises of faster in-
system chip design operation, automated design mapping, plug ‘n play
system interfaces, better debug – and more affordable verification
solutions than emulation.

S2C’s newest generation of FPGA prototyping products offers the latest
FPGAs from Xilinx and Intel – and they are available in single, dual, and
quad-FPGA variants.

Figure 21: S2C Single-FPGA Prodigy Logic System

In 2020, S2C announced a high-density FPGA prototyping platform, the
Logic Matrix series, to better address high-complexity hyper-scale
prototyping applications. A Logic Matrix packs 8 FPGAs in a single rack-

mounted chassis, and it is sized to allow eight Logic Matrix to fit into a
single standard server rack – thus supporting 64 FPGAs or chip designs
up to 3.1 billion ASIC gates.

To simplify FPGA interconnect while addressing bandwidth and
flexibility, S2C also introduced hierarchical connectivity: ShortBridge,
SysLink, and TransLink, each with different granularity to manage local,
Logic Matrix-to-Logic Matrix, and rack-to-rack interconnect.
ShortBridge provides high throughput connectivity between
neighboring FPGAs, SysLink connects FPGAs over high bandwidth

56

 Prototypical II

cables, and TransLink supports longer distance links between FPGAs
with SerDes over copper or optical cables. Logic Matrix also offers
server-class features such as real-time system monitors, professional
cooling, and redundant hot-pluggable power supplies to ensure high
reliability and robust operations. Logic Matrix’s high-density
architecture also further reduces the cost of ownership by taking up less
server rack space or the precious benchtop real estate.

Figure 22: S2C Logic Matrix Series Platform

 57

 Part II – System Validation Prototypical II

System Validation

Introduction

Moving from Hardware Verification to System Validation is an
evolutionary transition, and it is more about when things are occurring
vs. what things are occurring. There are some things you simply can’t do
at the earliest stages of SoC development. You can’t run block-level RTL
simulation before you have enough of the RTL completed for the block.
You can’t do IP integration at the RTL level until you have the rest of the
RTL completed to interact with the IP. You can’t’ run firmware on the
RTL until you have enough of the RTL working correctly for efficient
firmware testing. During the nascent stages of SoC development, when
the implementation of the system constituent components is embryonic,
the verification focus is on specifications.

Specifications are the only recognized reference that developers can base
decisions on to measure their progress towards tape-out sign-off on the
SoC design. Designers must continually ask themselves the question:
“Does my design conform to the specifications at every stage of
development (building the product right)” – all the time trusting that the
specifications faithfully represent what the user wants and expects
(building the right product). Ideally, all system development would be
done against a backdrop of a real system, running at real speeds, with

real users “banging” on the system simultaneously while the system
components were in the process of being developed. Sadly, that is not
reality – not today.

Verification vs. Validation

Consider the IEEE Software Engineering standards definition for
Verification (IEEE-STD-610). Verification, according to the standard, is:

“A test of a system to prove that it meets all its specified requirements at

58

 Prototypical II

a particular stage of its development.” [43]

Validation, according to the IEEE standard, is:

“An activity that ensures that an end product stakeholder’s true needs
and expectations are met.”

“Validation focuses on ensuring that the stakeholder gets the product
they wanted.”

Figure 23: Verification and Validation

There is an old line of reasoning that today’s silicon will always be an
inadequate platform for designing tomorrow’s silicon. If you think about
today’s SoC development environment, one of the major criticism of
today’s design tools is that they take too long. “It takes too long to

simulate my SoC.” Or “if I only had time to run more verification on my
SoC before I tape out.” Imagine being able to plug a model of your SoC
into a real end-product before you commit your SoC to silicon – running
at full design speed – with internal visibility and operational control –
and with the ability to relate any discovered design faults back to the
SoC reference design description for interpretation and resolution. The
spectrum of today’s design verification tools – software simulation,
formal verification, emulation, FPGA prototyping – are all purposed to
enable SoC designers to verify and validate their designs in less time with
greater accuracy. Each successive tool enables longer periods of

 59

 Part II – System Validation Prototypical II

operation of the design than the previous tool. If you need the fastest
operation of your SoC design today while connected to a target system –
you turn to FPGA prototyping.

Shift to System Validation

In today’s SoC development environment, with mounting TTM pressure,
there must be a deliberate effort to pull System Validation forward - to
move the focus from verification to validation and to shift the focus to
producing the right product as early as possible. [44] Realizing early
System Validation is the primary purpose of EDA tools like emulation
and FPGA prototyping. With more real system-level inputs, system
validation helps to find the bugs not found in the verification stage.
Software simulation takes SoC developers only so far – then, for more
accurate real-world system environment modeling and more real-world
performance, the verification and validation process must invariably

move into the hardware domain with emulation and FPGA prototyping.

Considering that the end-product is also taking shape progressively from
specification to implementation, System Validation can only be
accomplished with reference to the end-product, or a portion of the
end-product, is complete enough to begin validation. Knowing if the
system design will work the way it was envisioned to work in the user’s
hands at any stage of development is the intent – but, at early stages of

system development, the ability to determine this depends on how
complete the previous stage of design implementation is, and how
accurately the user environment can be modeled. If SoC developers
move too quickly to the next stage of validation, the next level validation
effort will be bogged down by issues that are not relevant to the next
development validation stage – e.g., firmware and software validated on
a buggy SoC design. Software developers want to spend their time
debugging their software, not the tools. They can only report that the
firmware does not work as expected, try to characterize the fault, hope

60

 Prototypical II

that the root cause of the problem can be quickly identified by the SoC
designers, and wait for an SoC design fix to be applied so they can
continue their work.

Figure 24: System Validation

Software Content

If there is any doubt about how significant the firmware and software
development effort is for today’s SoCs, let’s be clear – Semico reported
several years ago that “software design costs have eclipsed silicon design
efforts and have become the largest portion of the SoC creation effort.”

[45] This means that, to assure the fastest TTM, the SoC development
effort must comprehend multiple parallel paths, with the development
of all the system’s components staged to be progressively ready in time

for validation with the other system components as early as possible –
SoC design, IP integration, firmware design, software design, silicon
bring-up, and system bring-up.

Furthermore, the earliest possible time arrives for the implementation of
any dependent component (silicon, firmware, or software) when it is
“correct enough” to support the development of any successive and
dependent component. The longer into the development process that a
design fault persists (silicon, firmware, software) – the more costly it will
be to remedy the fault.

 61

 Part II – System Validation Prototypical II

FPGA Prototyping

When an FPGA prototyping platform is planned for SoC, firmware,
software, and system validation, the FPGA prototype development will
begin early (before the RTL is ready for prototyping) so the prototype
platform is ready when the SoC RTL design is mature enough to run on
hardware in the FPGAs. Each SoC development project will have its own
criteria for when the RTL is ready to run on the prototype. Some will
start prototyping when the RTL is 75% verified in simulation. The other

will start when the design fault discovery rate in simulation falls below a
certain threshold. FPGA prototyping is purposed for long periods of
continuous operations of the SoC design, and debug and reconfiguration
for design fault fixes are slower than it is for simulation. Trying to
prototype when there is a high frequency of faults can be inefficient
because developers will spend more time analyzing faults and
reconfiguring the FPGA prototype for fixes than they verify the SoC

design.

FPGA prototyping should be managed as a distinct SoC development
effort, with FPGA prototype specialists working closely with the SoC
RTL design specialists. When design faults are discovered with the FPGA
prototype, the RTL specialists must lead the root-cause analysis and
development of fixes to the RTL design as well as modifications to the
FPGA prototype. Managing RTL revisioning and design fixes will be
important disciplines for the two teams to minimize inefficiencies that
might arise when a new design fault is identified on a previous version of
the RTL that has already been modified with a previous design fix.
Keeping the FPGA prototype aligned with the latest RTL version will
streamline the verification and validation process – but it is not
something the FPGA prototyping team wants to do because it requires a
relatively high effort when compared to simulation.

The FPGA prototype will have one or more FPGAs and come equipped

62

 Prototypical II

with debugging features that enable visibility into the SoC design being
modeled. In addition, the prototype will have external connections to
the modeled SoC target system to start system-level validation early.
Moreover, the prototype may have connections to a host PC that models
system-level data streams intended to mimic the SoC system
stimulation. S2C is one FPGA prototype supplier that offers complete
solutions for system-level modeling.

Figure 25: Complete FPGA Prototyping Solutions

S2C’s most popular prototyping product is its Prodigy Logic System
which is available in Single, Dual, and Quad configurations. Prodigy
Logic System is an all-in-one design. In addition to an integrated power

supply design that supports remote power cycling, Prodigy Logic System
also supports other runtime operations such as multiple programmable
global clocks, FPGA programming through Ethernet, USB, JTAG, and
micro-SD. It also supports an optional on-board battery for binary file
encryption.

For debug, Prodigy Logic System may be paired with S2C’s Multi-Debug
Module (also called MDM), which provides concurrent waveform
viewing from multiple FPGAs in a single host PC window. MDM

 63

 Part II – System Validation Prototypical II

supports waveform tracing for up to 32K probes per FPGA in 8 groups of
4K probes and external hardware for storage of up to 8GB of waveform
data. Waveform capture triggers can be specified as single events or
combinatorial events, and trace data may be transferred to the host PC.

Figure 26: Prodigy Multi-Debug Module

For early system validation demanding stimulus data from a system-level
software model, ProtoBridge can be a crucial tool. As previously
highlighted, ProtoBridge can provide a high-throughput data channel
between the host PC running RTL simulator or high-abstraction-level
models and the FPGA prototype.

64

 Prototypical II

Software Development

Early Software Verification

Software is a critical component of product development effort, whether
it is a system or an SoC design. As reported in previous sections of this
book, software design costs have eclipsed silicon design efforts and have
become the largest portion of the SoC creation effort. [46] And, like all
competitive electronic products today, the pressure to complete system
verification in less time with full system/SoC functionality running
system software has never been greater. Since today’s SoCs typically
have a 9-month to 18-month development cycle to design the silicon
(not including the time it takes for silicon fabrication), software
development cannot wait for the availability of silicon before starting
the verification process. Running the software stack on full system/SoC
functionality before silicon will surface system/SoC software

interoperability issues early in the SoC development cycle. If a serious
SoC/software interoperability issue is discovered after the SoC is
committed to silicon, and the SoC silicon requires a silicon re-spin, the
re-spin will add several months to the product development time. So,
early software verification delivers two benefits; it “shifts-left” the whole
software development schedule, and it may prevent a silicon re-spin by
uncovering a critical functional or performance issue prior to SoC tape-
out.

It is common practice today for system & SoC development projects to
plan for some amount of hardware/software co-verification prior to
silicon. That is, running the product software stack on the system & SoC
hardware while the components of the system & SoC are still under
development – especially the SoC silicon. Effective hardware/software
co-verification requires running the system & SoC at some minimum
operating speed (ranging from megahertz to tens of megahertz), within
an accurate representation of the “target” system (if not the actual

 65

 Part II – Software Development Prototypical II

system itself). Software simulation tools are the workhorse tools for
system verification, including software verification. With software
simulation, system models can easily be tuned to be more “life-like”,
design fixes are quick and easy to implement, internal design visibility is
easy to instrument, the design can be started and stopped at any time
when design issues are encountered, and multiple copies of the
simulation environment are easily distributed to large design teams in
remote geographic locations at a modest price per user. Software
simulation tools are leveraged to the extent of their capacity and
performance.

Hardware-Dependent Software

Many of today’s systems & SoCs require a deep interdependency
between the software and the hardware. Designers have learned to
manipulate SoC design dynamic operation with low-level software to

achieve lower power operation and higher performance when called for,
and more effective techniques for data security – but these additional
operating modes contribute to increased system & SoC verification
complexity with more corner cases that require verification.

For longer periods of software run time on the system & SoC hardware,
and more accurate system modeling, developers may add hardware
emulation to the verification tool mix. Besides running orders of
magnitude faster than software simulation, hardware emulation
supports in-circuit emulation, or ICE. ICE enables SoC designs modeled
in the emulator to actually “plug” into functioning system hardware that
can very accurately model the actual system hardware running the
actual system software (sometimes the actual system itself). An iconic
historic design tool milestone was achieved in the early 1990s when
emulation of Intel’s Pentium processor was used to boot the operating
system and run a spreadsheet application – well before Pentium silicon

was available. [47]

66

 Prototypical II

While ICE is a compelling verification approach, it does present some
physical challenges for implementation. Consequently, today’s
emulation tools have evolved to include software virtual models of
system hardware and semiconductor intellectual property (IP) that can
be easily configured to represent system hardware components for
hardware/software co-verification. These virtual models can generate
large amounts of transaction-level data to stimulate the SoC design
while the software is running on the emulated SoC design environment.

Extending Verification Performance with FPGA Prototyping

Similar to software simulation, hardware emulation has its performance
limitations too. Emulation supports the operation of the system& SoC at
frequencies in the low megahertz range. When emulation reaches its
limits of performance and system modeling, and TTM schedules call for
more comprehensive hardware/software verification early in the

development process, SoC developers turn to FPGA prototyping. The use
of FPGA prototyping for early hardware/software co-verification is
growing rapidly, driven by SoC designs for the Internet of Things (IoT),
Autonomous Driver Assistance Systems (ADAS), and healthcare – where
tighter interdependencies exist between power and performance, and
can only be verified with hardware/software co-verification.

Once the SoC design is committed to silicon by taping out, FPGA
prototyping enables software developers to continue with verification
while silicon is being fabricated. It will be several months, and many
millions of irrevocably committed dollars, before the silicon is available
for moving to the next level of software verification with real silicon.
Discovering SoC design issues before silicon, even during the silicon
fabrication process, may save serious time and money. For example, if an
SoC design issue is discovered that only impacts one or a few silicon
mask layers, the cost for a revised mask set is reduced compared with

the cost of full mask set, and the silicon fabrication process with the old

 67

 Part II – Software Development Prototypical II

mask set is restarted before it runs to completion. Needless to say, the
development team is highly motivated to reduce the number of times
they need to pay for new mask sets and re-spin SoC silicon. It may not
be intuitively obvious that, while the irrevocably committed silicon re-
spin dollars and extended engineering time are significant, the potential
dollar value of market share losses when estimated over the projected
product lifetime resulting from a delayed market entry can be much
larger.

Once it is up and running, hardware/software co-verification may be
viewed as having three basic recurring phases;

1. Run-Time – run the hardware/software until the next design issue
is encountered (depending on the nature of the design issue,
hardware/software verification may or may not be able to progress
while the design issue is being fixed).

2. Root Cause Analysis (RCA) – identify the hardware/software
design artifact that is causing the design issue (some problematic
design artifacts may appear to be random, and most actually occur
well before the symptoms of the artifact are detected during
system operation).

3. Corrective Action (CA) – design a modification to the hardware
design and/or the software design to fix the design issue,
distribute the design modification to the system/SoC development
team, and update the verification tools with the design revision.

When a design issue is encountered, the RCA for the design issue can be
tricky – it may not be immediately obvious from the symptoms whether
the design issue is attributable to the software, the SoC design RTL, or if
it is being caused by an artifact of the FPGA prototype’s system model.

It is easy to envision that the total hardware/software verification time is
the sum total of all of the hardware/software Runs Times, plus the sum
total of all of the RCA and CA times. The Run Times are very fast with

68

 Prototypical II

FPGA prototyping, but the RCA/CA times are unpredictable and totally
dependent on the developer’s ability to identify the design issue and
quickly devise an effective design fix – it will be a hardware/software
team effort. Another consideration for managing total
hardware/software verification time is how long it takes to deploy the
design fix to the FPGA prototyping platform – it would not be helpful if
the FPGA prototyping revision deployment time is extended, and days
will matter.

Early in the development process, when frequent design faults are still
being encountered, Run Times can be relatively short between design
issue discoveries. So, project management will be well advised to plan
for a smooth and well-documented design revisioning process when
design revisions are needed. When a design issue is encountered, the
development team must react and drive a fast RCA/CA, the design issue
must be documented and communicated to the rest of the development

team, and the design revision must be distributed and deployed by the
development team in a dynamic system development environment.

Interfacing Processor

One important prerequisite to software development is realizing the
processor. Depending on the adopted product development
methodology and the design phase, each design team may have their
own preference in how the processor is implemented and interfaced.

When a brand new product is first defined, it is common to explore
which processor should be used. To solidify the processor architecture,
it is typical to conduct early software development over virtual
platforms, such as QEMU and GEM5 as an instruction set simulator
(ISS). The rest of the SoC and existing hardware IPs are placed in FPGA
and connected to the ISS over high-bandwidth bus protocols. This
approach helps to select the proper processor core, define the software

 69

 Part II – Software Development Prototypical II

architecture, and start the software porting tasks in the early design
stage.

Once the processor core is chosen, design teams can replace the virtual
processor platform with a real hardware processor platform. In addition
to improving the data transfer efficiency between the processor and the
FPGA, using a real processor can enable more accurate behaviors and
performance measurements. As an alternative, design teams may also
look to deploy hardware processor via Intel SoC FPGAs [48] or Xilinx Zynq
SoC [49], FPGAs with integrated hardcore processors, to further
consolidate the prototyping environment for software development.
These SoC FPGAs provide more flexibility and can easily interface with
existing FPGA prototyping platforms. The programmability on both
ends is useful for protocol translation and additional processing when
required. Software code can execute at high speed with high cycle
accuracy over such configuration.

Figure 27: Connecting Xilinx Zynq platform with S2C Prodigy platform for fast software
development

For design teams that would like to fine-tune firmware cores, critical
RTOS sessions, or the processor micro-architecture, a soft processor IP
is needed. With the soft processor IP inside, the FPGA prototype can
provide more visibility, control, and flexibility. On the flip side,
integrating the processor IP into the FPGA prototype typically requires
multiple FPGAs. As a result, tools designed for multiple-FPGA

debugging, such as S2C's MDM [50] and Synopsys' DTD [51], are pretty

FMC

70

 Prototypical II

valuable. These tools offer an effective and efficient debug approach for
validating SoC designs to provide good visibility to the SoC behavior
without sacrificing execution performance.

Figure 28: FPGA-based prototypes offer an extreme performance advantage over
various software simulation techniques [52]

 71

 Part II – Compatibility Testing Prototypical II

Compatibility Testing

Introduction

According to a Wikipedia “stub” article definition of Compatibility
Testing [53] that references the ISO 25010 standard for System and
Software Quality Models, and with some generalization by this author to
apply the definition to SoC-based systems and software, Compatibility
may be defined as: The degree to which a system or product can
exchange information with other systems, while sharing a common
environment and resources, without detrimental impact on any other
system or product. The article goes on to add a subtle distinction
between Compatibility and Interoperability by re-labeling the degree of
Compatibility as “co-existence”, and defining the degree of
Interoperability as: “The degree to which two or more systems, products
or components can exchange information and use the information that

has been exchanged.” Having established a context for a definition of
Compatibility Testing, the article defines Compatibility Testing as:
“Information gathering about a product or software system to determine
the extent of co-existence and interoperability exhibited in the system
under test.”

Another definition for Interoperability highlights an important
consideration not captured in our definitions above: “Interoperability
refers to the basic ability of computerized systems to connect and
communicate with one another readily, even if they were developed by
widely different manufacturers in different industries. Being able to
exchange information between applications, databases, and other
computer systems is crucial for the modern economy.” [54] The
Interoperability consideration that development of systems and products
will be performed by different engineers, working for different
companies, in different markets, shines a bright light on the broader
challenge of SoC-base product Compatibility Testing – developers must

72

 Prototypical II

consider that their products will be expected to exchange information
with a myriad of other products with a completely different
development provenance.

Consequently, as today’s SoC-based systems and products have exploded
in complexity, the scope of Compatibility Testing of these SoC-based
systems and products has increased dramatically. Developers need to
consider a wide variety of environments and resources that their systems
and products must operate in – and that the critical functionality
(including electrical specifications and performance) must be confirmed
prior to committing to silicon because of the high risk that some minor
incompatibility will impair the quality of the silicon in a way that
requires a silicon re-spin.

Industry Standards

The availability of standards in the semiconductor electronics industry

has gone a long way to reducing the required scope of Compatibility
Testing – but the standards themselves are becoming very complex, are
constantly changing with new standards generations, and are subject to
subtle misinterpretations by different product developers. Today’s
standards-based commercial semiconductor IP has matured to the point
where IP adherence to the standards has been thoroughly tested by the
IP supplier, and possibly by some of their customers, before being
delivered to SoC developers. In some cases, the specifications for the
next generation of a standard may still not have been frozen when the
development of a new SoC-based product must be started – be reminded
that SoC-based product development takes several years to complete, so
some aggressive SoC-based product developers may feel compelled in
competitive markets to start a new project incorporating a new standard
when the standard is still changing but is expected to be frozen prior to
SoC commitment to silicon.

 73

 Part II – Compatibility Testing Prototypical II

The primary driver of the commercial semiconductor IP market has
been the management of SoC design complexity for reducing SoC
development cost and TTM, enabling an SoC design team to focus their
development effort on product differentiation in their area of subject
matter expertise, and that industry standardization of the IP assures a
high level of interoperability with all commercial products that claim to
operate according to the standards. Being able to implement complex
SoC-based systems and products with large blocks of pre-verified,
standards-based functionality dramatically reduces the Compatibility
Testing burden for new products – under the assumption that these IP
blocks are designed and tested to functional and electric standards that
are widely available and strictly observed by the entire professional
product development community.

Software Enables Comprehensive Compatibility Testing

SoC-based product developers today take advantage of early FPGA
prototyping to extend SoC Compatibility Testing to include some, if not
all, of the product’s software running on the SoC-based hardware before
silicon – a testimony to the claim that the primary application of FPGA
prototyping today is for early hardware/software co-verification.
Execution of a product’s software stack – from the device drivers at the
bottom of the software stack, to the operating system, and to application
software – provides another level of improvement in verification

environment accuracy to better support early Compatibility Testing with
a more comprehensive coverage. For some applications, SoC
development is supported by FPGA prototyping tools that enable
developers to run the product’s full software stack on a prototype of the
SoC-based hardware prior to silicon tape-out – perhaps not at the full
SoC silicon speed, but at sufficient speeds to exercise the full software
stack on the SoC-based hardware. For example, at the low end of SoC

complexity, new Bluetooth IP developers are using today’s FPGA
prototyping technology to operate their designs at speed up to 24 MHz –

74

 Prototypical II

fast enough to run the full software stack prior to tape-out, and fast
enough to allow an FPGA prototype of one Bluetooth radio to “talk to”
an FPGA prototype of another Bluetooth radio as part of their
Compatibility Testing.

Figure 29: Siemens - ECU and its Software Stack [55]

Modern FPGA prototyping systems offer software developers a cost-
effective, near-real-world verification environment, a desktop platform
that enables them to start SoC-based hardware/software co-
development much earlier than a simulation-based or emulation-based
verification platform, providing that the software executing performance
is feasible – and it is all about the speed of the platform. Indeed,
simulation is just too slow for comprehensive software testing, and if the
software testing cannot begin until after silicon, TTM will be extended.
Subsequently, it is not uncommon that further delays may be caused by
a silicon re-spin resulting from some crippling SoC/software
incompatibility.

“How about emulation?” you may ask. While emulation is hardware-
assisted and it performs an order of magnitude faster than simulation, it
is still an order of magnitude slower than FPGA prototyping. It is also
too expensive for each software developer to have their own desktop
emulator. We can easily model, by making a few assumptions on the
setup time of emulation vs. FPGA prototyping, system performance, and
the number of test runs, to find out the time-saved crossover point at
which FPGA prototyping is more advantageous. [Prototyping/Emulation
Performance Calculator https://w2.s2ceda.com/resource-

 75

 Part II – Compatibility Testing Prototypical II

library/prototyping-calculator]

Compatible Testing in the Cloud

The need for adequate system validation and compatible testing is
convoluted by the vast combinations of hardware configurations and
peripheral connections, thus making it necessary for project teams to
conduct testing in parallel to meet project schedules. This calls for a
validation platform that is both capable of supporting concurrent testing
operations and scalable to provide sufficient resources. Yet another
challenge to overcome is the precise constructions and reconstructions
of testing environments to ensure the validity of the compatibility
testing itself. Both criteria calls for a hardware-assisted validation
platform – in the cloud. Not only would a cloud-based solution provides
the scalability, the resource and the environment to address the
challenges mentioned, it can lower cost through higher utilization rate

and simplify deployment and maintenance.

Figure 30: S2C Scalable Prodigy FPGA Prototyping Platforms

S2C’s Prodigy Prototyping technology provides industry-leading remote
management capabilities, ranging from remote FPGA download, virtual

IOs, switches, UARTs, LEDs, and remote power cycles, to enterprise-
class server/client management software, to provide effective resource

76

 Prototypical II

sharing and management. Such remote access, especially with
prototyping hardware deployed in masses, provides software engineers
with the means to run massive parallel regression tests and conduct
analysis on multiple platforms simultaneously. To bring remote access
and utilization management to the next level, S2C assisted customers in
building a system validation and compatibility testing platform with
more than one hundred FPGAs. Combing S2C’s Neuro cloud
management software and VMware virtual machines to manage the
high-density Logic Matrix hardware, a resilient and flexible FPGA
prototyping cloud service was constructed within six weeks. Fewer
servers, lower total cost of ownership, but large design capacity and
benefiting a large number of users. After completion, hundreds of users
in the enterprise, no matter where they are, can remotely use the
hardware platform, never interfere with each other, and efficiently
perform compatibility testing, system validation, and software
development concurrently.

Figure 31: Various design and verification technologies for different design stages and
SoC integration levels

 77

 Prototypical II – References

References

[1] "TSMC brings 1,600 jobs to Arizona with new $12B factory," AZBIGMEDIA, 19 5

2020. [Online]. Available: https://azbigmedia.com/business/tsmc-brings-1600-

jobs-to-arizona-with-new-12b-factory/.

[2] Harry Foster, "The 2020 Wilson Research Group Functional Verification Study

- Part 1," Siemens, 5 11 2020. [Online]. Available:

https://blogs.sw.siemens.com/verificationhorizons/2020/11/05/part-1-the-

2020-wilson-research-group-functional-verification-study/.

[3] "1947 – Invention of the Point-Contact Transistor," Computer History

Museum, [Online]. Available:

https://www.computerhistory.org/siliconengine/invention-of-the-point-

contact-transistor/.

[4] "1958 – All semiconductor ‘Solid Circuit’ is demonstrated," Computer History

Museum, [Online]. Available:

https://www.computerhistory.org/siliconengine/all-semiconductor-solid-

circuit-is-demonstrated/.

[5] "1960 – First Planar Integrated Circuit is Fabricated," Computer History

Museum, [Online]. Available:

https://www.computerhistory.org/siliconengine/first-planar-integrated-

circuit-is-fabricated/.

[6] "1963 – Standard Logic IC Families Introduced," Computer History Museum,

[Online]. Available: https://www.computerhistory.org/siliconengine/standard-

logic-ic-families-introduced/.

[7] Jerry Heller and Irwin Jacobs, "Viterbi Decoding for Satellite and Space

Communication," IEEE Transactions on Communication Technology, vol. 19,

no. 5, pp. 835 - 848, 10 1971.

78

 Prototypical II

[8] "The Story of the Intel 4004," Intel, [Online]. Available:

https://www.intel.com/content/www/us/en/history/museum-story-of-intel-

4004.html.

[9] "Philips Data Sheet – PLS100 Programmable Logic Array," 22 10 1993. [Online].

Available: https://docs.rs-online.com/7761/0900766b800255f1.pdf.

[10] S. Leibson, "’XILINX DEVELOPS NEW CLASS OF ASIC.’ Blast from the Past: A

press release from 30 Years ago, yesterday," Xilinx, 3 11 2015. [Online].

Available: https://forums.xilinx.com/t5/Xcell-Daily- Blog/XILINX-DEVELOPS-

NEW-CLASS-OF-ASIC-Blast-from-the-Past- A-press/ba-p/663224.

[11] Paulmcl, "Why did EDA have a hardware business model?," 21 1 2009. [Online].

Available: http://edagraffiti.com/?p=151.

[12] P. McLellan, "A Brief History of ASIC, part I," SemiWiki, 21 8 2012. [Online].

Available: https://www.semiwiki.com/forum/content/1587-brief-history- asic-

part-i.html.

[13] "Intel 80386," WIKIPEDIA, [Online]. Available:

https://en.wikipedia.org/wiki/Intel_80386.

[14] I. Gelsinger et al, "Coping with the Complexity of Microprocessor Design at

Intel – A CAD History," IEEE Solid-State Circuits Magazine, p. 6, 2010.

[15] X. Stephen Trimberger, "A Reprogrammable Gate Array and Applications,"

Proceedings of the IEEE, vol. 81, no. 7, pp. 1030 - 1041, 7 1993.

[16] Al Ries and Jack Trout, Positioning: The Battle for Your Mind, McGraw Hill.

[17] "The Pentium Processor," [Online]. Available:

https://image.slidesharecdn.com/comparisonofpentiumprocessorwith80386an

d80486-120903115019-phpapp01/95/comparison-of-pentium-processor-with-

 79

 Prototypical II – References

80386-and-80486-13-728.jpg?cb=1346673083.

[18] W.-Y. Koe, "Model Validation Methodology," [Online]. Available:

https://old.hotchips.org/wp-

content/uploads/hc_archives/hc05/3_Tue/HC05.S6/HC05.6.1-Koe-Intel-

Pentium.pdf.

[19] N. Mike Butts, "Logic Emulation and Prototyping: It’s the Interconnect (Rent

Rules)," 8 2010. [Online]. Available:

http://ramp.eecs.berkeley.edu/Publications/RAMP2010_MButts20Aug%20(Slid

es,%208-25-2010).pptx.

[20] Wikipedia, "Electronic system-level design and verification," Wikipedia,

[Online]. Available: https://en.wikipedia.org/wiki/Electronic_system-

level_design_and_verification.

[21] G. M. a. A. P. Brian Bailey, ESL Design and Verification: A Prescription for

Electronic System Level Methodology, Morgan Kaufmann/Elsevier, 2007.

[22] F. Schirrmeister, "Electronic System-Level Design: Are We There Yet?,"

Semiconductor Engineering, 2018. [Online]. Available:

https://semiengineering.com/electronic-system-level-design-are-we-there-

yet/.

[23] Wikipedia, "Semiconductor intellectual property core," Wikipedia, [Online].

Available:

https://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core.

[24] SemiconductorEngineering, "Verification IP," SemiconductorEngineering,

[Online]. Available:

https://semiengineering.com/knowledge_centers/intellectual-

property/verification-ip-vip/.

80

 Prototypical II

[25] MarketsandMarkets, "Semiconductor Intellectual Property (IP) Market,"

MarketsandMarkets, [Online]. Available:

https://www.marketsandmarkets.com/Market-Reports/semiconductor-silicon-

intellectual-property-ip-market-651.html.

[26] V. M. Research, "Semiconductor IP Market Size By Design IP, By IP Source, By

Vertical, By Geographic Scope and Forecast," Verified Market Research,

[Online]. Available: https://www.verifiedmarketresearch.com/product/global-

semiconductor-intellectual-property-market/.

[27] C. Today, "Semiconductor IP market size worth $9.3 billion by 2026,"

Communications Today, [Online]. Available:

https://www.communicationstoday.co.in/semiconductor-ip-market-size-

worth-9-3-billion-by-2026/.

[28] AnySilicon, "What is an IP (Intellectual Property) core in Semiconductors?,"

AnySilicon, [Online]. Available: https://anysilicon.com/ip-intellectual-

property-core-semiconductors/.

[29] D. &. Reuse, "Arteris IP Advances onto List of Top 15 Semiconductor IP

Vendors," Design & Reuse, [Online]. Available: https://www.design-

reuse.com/news/48119/arteris-ip-top-15-semiconductor-ip-vendors.html.

[30] S. Engineering, "Battling Fab Cycle Times," Semiconductor Engineering,

[Online]. Available: https://semiengineering.com/battling-fab-cycle-times/.

[31] S. Engineering, "Process Corner Explosion," Semiconductor Engineering,

[Online]. Available: https://semiengineering.com/process-corner-explosion/.

[32] E. Times, "New strategies shorten IP verification," EE Times, [Online].

Available: https://www.eetimes.com/new-strategies-shorten-ip-verification-

process/.

 81

 Prototypical II – References

[33] T&VS, "Hardware Verification," T&VS, [Online]. Available:

https://www.testandverification.com/solutions/hardware-verification.

[34] Guru99, "Design Verification & Validation Process," Guru99, [Online].

Available: https://www.guru99.com/design-verification-process.html.

[35] M. Butts, "Logic Emulation and Prototyping: It’s the Interconnect (Rent

rules)," Mike Butts, [Online]. Available: http://ramp.eecs.berkeley.edu/.

[36] Barron’s, "Apple Stock Is Rallying on a Report iPhone Demand Is Stronger

Than Expected," Barron’s, [Online]. Available:

https://www.barrons.com/articles/apple-stock-rallying-on-report-iphone-

demand-is-stronger-than-expected-51608049027.

[37] Goodreads, "Steve Jobs Quotes," Goodreads, [Online]. Available:

https://www.goodreads.com/quotes/988332-some-people-say-give-the-

customers-what-they-want-but.

[38] Wikipedia, "There are known knowns," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/There_are_known_knowns.

[39] Wikipedia, "Johari window," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Johari_window.

[40] C. Theory, "The Johari Window Model," Communication Theory, [Online].

Available: https://www.communicationtheory.org/the-johari-window-model/.

[41] E. Times, "Early verification cuts design time and cost in algorithm-intensive

systems," EE Times, [Online]. Available: https://www.eetimes.com/early-

verification-cuts-design-time-and-cost-in-algorithm-intensive-systems/.

[42] J. Dorsch, "FPGA Prototyping Gains Ground," SemiconductorEngineering, 25 8

2016. [Online]. Available: https://semiengineering.com/fpga-prototyping-

82

 Prototypical II

gains-ground/.

[43] Plutora, "Verification vs Validation: Do You know the Difference?," Plutora,

[Online]. Available: https://www.plutora.com/blog/verification-vs-validation.

[44] V. Excellence, "Verification, Validation, Testing of ASIC and SOC designs –

What are the differences?," Verification Excellence, [Online]. Available:

http://verificationexcellence.in/verification-validation-testing-soc/.

[45] Semico, "Complex SoC Silicon and Software Design Costs," Semico, [Online].

Available: https://semico.com/content/complex-soc-silicon-and-software-

design-costs.

[46] Semico, "Complex SoC Silicon and Software Design Costs," Semico, [Online].

Available: https://semico.com/content/complex-soc-silicon-and-software-

design-costs.

[47] M. Butts, "Logic Emulation and Prototyping," 2010. [Online]. Available:

http://ramp.eecs.berkeley.edu/Publications/RAMP2010_MButts20Aug%20(Slid

es,%208-25-2010).pptx.

[48] Intel, "Intel® Agilex™ FPGA and SoC," Intel, [Online]. Available:

https://www.intel.com/content/www/us/en/products/details/fpga/agilex.html

.

[49] Xilinx, "ZYNQ," Xilinx, [Online]. Available:

https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html.

[50] S2C, "Prodigy™ Multi-Debug Module," S2C, [Online]. Available:

https://www.s2ceda.com/products/prodigy-multi-debug-module.

[51] Synopsys, "HAPS Deep Trace Debug," Synopsys, [Online]. Available:

https://www.synopsys.com/verification/prototyping/haps/haps-deep-trace-

debug.html.

 83

 Prototypical II – References

[52] M. Larouche, "How to achieve 100% visibility with FPGA-based ASIC

prototypes running at real-time speeds," EE Times, 1 8 2007. [Online].

Available: https://www.eetimes.com/how-to-achieve-100-visibility-with-fpga-

based-asic-prototypes-running-at-real-time-speeds/#.

[53] Wikipedia, "Compatibility testing," Wikipedia, [Online]. Available:

https://en.wikipedia.org/wiki/Compatibility_testing.

[54] S. O’Connor, "What Is Interoperability, and Why Is it Important?," Stephen

O’Connor, [Online]. Available: https://www.adsc.com/blog/what-is-

interoperability-and-why-is-it-important.

[55] Siemens, "Embedded Software," Siemens, [Online]. Available:

https://www.plm.automation.siemens.com/global/en/our-

story/glossary/embedded-software/64121.

