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The Art of the “Start” 

The semiconductor industry revolves around the “start.” Chip design 
starts lead to more EDA tool purchases, more wafer starts, and 
eventually to more product shipments. Product roadmaps develop to 
extend shipments by integrating new features, improving performance, 
reducing power, and reducing area – higher levels of functional 
integration and what is referred to as “improved PPA.” Successful 
products lead to additional capital expenditures, stimulating more chip 
designs and more wafer starts. If all goes well, and there are many things 
that can go wrong between the MRD and the market, this cycle 
continues. And in keeping with good capitalist intentions, this frenetic 
cycle drives increased design complexity and design productivity to feed 
the global appetite for economic growth. 

Chip designs have mutated from relatively simple to vastly complex and 
expensive, and the silicon technology to fabricate chips has advanced 
through rapid innovation from silicon feature sizes measured in tens of 
microns – to feature sizes measured in nanometers. Once visualized as 
ones and zeroes in a table, functions now must comprehend the 
execution of powerful operating systems, application software, massive 
amounts of data, and heretofore incomprehensible minuscule latencies. 

Continued semiconductor industry growth depends on delivering ever 

more complex chip designs, co-verified with specialized system software 
– in less time with relatively fewer mistakes. New chip wafer fabs now 
cost billions of dollars, with production capacities in the 10’s of 
thousands of wafers per month – in May of 2019, TSMC announced that 
it would build a new wafer fab in Arizona. The total project spending for 
the planned new 5-nm wafer fab, including capital expenditures, is 
expected to be approximately $12B from 2021 to 2029, and the fab is 
expected to have the capacity to produce 20,000 wafers per month. [1] 
One malevolent block of logic within a chip design can cause very 
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expensive wafers to become scrap. If a flaw manages to escape, only 
showing itself at a critical moment in the hands of a customer, it can set 
off a public relations storm calling into question a firm’s hard-earned 
reputation as a chip supplier. 

Chip design verification is like quality: it asymptotically approaches 
perfection but never quite achieves 100%. It may be expressed as a high 
percentage less than 100%, but close enough to 100%, to relegate fault 

escapes to the category of “outlier” – hopefully of minimal consequence. 
Only through real-world use in the hands of lots of customers will every 
combination of stimuli be applied to every chip pin, and every response 
be known. So, chip designers do their best to use the latest cocktail of 
verification techniques and tools, and EDA companies continually 
innovate new verification tools, design flows, and pre-verified silicon IP, 
in a valiant effort to achieve the elusive goal of achieving chip design 
verification perfection. 

The stakes are very high today for advanced silicon nodes where mask 
sets can cost tens of millions of dollars, and delays in chip project 
schedules that slip new product roll-out schedules can cost millions of 
dollars more in marketing costs. With the stakes so high for large, 
sophisticated chips, no prudent leader would dare neglect investing in 
semiconductor process quality. Foundries such as GlobalFoundries, 
Intel, Powerchip, Samsung, SMIC, TSMC, UMC, and others have 
designed their entire businesses around producing high-quality silicon 
in volume at competitive costs for their customers. 

So, chip design teams struggle to contain verification costs and adhere 
to schedules. The 2020 Wilson Report found that only about 32 percent 
of today’s chip design projects can achieve first silicon success, and 68 
percent of IC/ASIC projects were behind schedule. [2] A prevailing 

attitude is that the composite best efforts of skilled designers using 
advanced EDA design tools should result in a good outcome. Reusing 
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known-good blocks, from a previous design or from a reliable IP source, 
is a long-standing engineering best practice for reducing risk and 
speeding up the design cycle. Any team that has experienced a chip 
design “stop” or “delay” knows the agony of uncertainty and fear that 
accompanies these experiences. Many stories exist of an insidious error 
slipping through design verification undetected and putting a chip 
design, a job, and sometimes an entire company, at risk. The price of 
hardware and software verification escapes can dwarf all other product 
investments, and ultimately diminish a hard-earned industry leadership 
reputation. 

Enter FPGA-based prototyping for chip design verification. A robust 
verification plan employs proven tests for IP blocks, and tests the fully 
integrated design running actual software (co-verification) – which is 
beyond the reach of software simulation tools alone. Hardware 
emulation tools are highly capable, and faster than software simulation, 
but highly expensive and often out of reach for many design teams. 
FPGA-based prototyping tools are scalable, cost-effective for almost any 
design, offer capable debug visibility, and are well suited to hardware-
software co-verification. 

In this book, we look at the history of FPGA-based prototyping and the 
leading providers – S2C, Synopsys, Cadence, and Mentor. Initially, we 
will look at how the need for co-verification evolved with chip 
complexity, where FPGAs got their start in verification, and why ASIC 
design benefits from prototyping technology. 

A Few Thousand Transistors 

One transistor came to life at Bell Labs in 1947. Solid-state electronics 
held great promise, with transistors rapidly improving and soon 

outperforming vacuum tubes in size, cost, performance, power 
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consumption, reliability, and footprint. However, there were still 
packaging limitations in circuit design, with metal cans, and circuit 
boards and wires, and discrete passive components such as resistors and 
capacitors. [3] 

In 1958, Jack Kilby of TI demonstrated a simple phase-shift oscillator 
with one bipolar transistor and roughly hewn resistors and capacitors on 
one slice of germanium, with flying wire connections on the chip. By 

1960, Fairchild teams led by Robert Noyce had a monolithic integrated 
four-transistor flip-flop running in silicon, a more stable and mass-
producible material and process. [4], [5] 

Standard small-scale integration (SSI) parts appeared in 1963, with 
Sylvania’s SUHL family debuting as the first productized TTL family 
(Transistor-Transistor Logic). TI followed with the military-grade 5400 
Series and the commercial-grade 7400 Series, setting off a parade of 

second-sourcing vendors. In rough terms, these SSI parts used tens of 
transistors providing a handful of logic gates. [6]  

 

Figure 1: 7400 SSI Logic Device – Quad 2-Input NAND Gates 

Medium-scale integration (MSI) first appeared with the 4-bit shift 
register – a part that Irwin Jacobs of Qualcomm fame proclaimed in a 
1970 conference as “where it’s at” for digital design. MSI parts with 
hundreds of transistors extended the productized logic families with a 
range of functions, but were still simple to use. Where SSI parts offered 
several individual gates in a single package with common power and 
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ground, MSI parts usually grouped gates into a single functional logic 
block operating on multiple bits of incoming data. Pin counts and 
package sizes remained small. SSI and MSI parts are the electronic 
equivalents of hand-chiseled statues. Producing a mask was labor-
intensive, with layouts carefully planned and checked by engineers. 
Vendors heavily parameterized parts across variables of voltage, 
temperature, rise and fall time, propagation delay, and more. Each chip 
was a small block of IP, taken as golden, assembled into a system using 
wire wrapping or stitching for prototypes or short runs, and printed 
circuits for finished products in higher volumes. Everything about an SSI 
or MSI design was readily visible just by probing with an oscilloscope or 
logic analyzer at the package pins, and problems were usually 
somewhere in the wires in between. 

 

Figure 2: Texas Instruments SN74S181N 4-bit ALU with 63 logic gates 

That changed drastically when large-scale integration (LSI) parts 
emerged. The early 1970s saw chips for digital watches, calculators, and 
the first integrated computer memories, each with a few thousand 
transistors. LSI parts were analogous to Mount Rushmore – carved from 

the monolith in labor-intensive steps. Parts were harder to verify post-
layout, and more expensive to fabricate. Packaging changed as chips had 



 

  9 

 Part I – Evolution of Design Verification Techniques                                  Prototypical II 

significantly more I/O pins. Second-sourcing became less common as 
vendors protected their high-value IP. Using LSI chips changed as well. 
The good news was more functions were integrated. The bad news was 
board-level test visibility declined, with designers having to trust the 
datasheet because the inner workings of a chip were mostly 
impenetrable. Chip errata become commonplace; instead of fixing the 
chip layout immediately, vendors spent energy on diagnosing issues and 
determining workarounds, waiting to gather enough fixes to justify a 
chip re-spin. 

Microprocessors and ASICs 

Entire “processors” were implemented by connecting LSI, MSI, and SSI 
chips on printed circuit boards. A prime example was a Linkabit design 
in 1971 for a Viterbi decoder – 360 TTL chips on 12 boards, in a single 
4.5U rackmount enclosure replacing a couple of cabinets of earlier 
equipment. Assembly language programming took shape, with simple 
instruction sets. This was exactly the transformation Jacobs had been 
talking about, but his firm and many others were looking beyond to 
bigger chips that consolidated functions. [7] 

 

Figure 3: Intel 4004 microprocessor 
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Intel moved to the lead in LSI with offerings in DRAM, EPROM, and a 
new type of chip in November 1971: the microprocessor. Its first part 
sprang from a custom product for a Japanese calculator vendor. The 
4004 4-bit microprocessor debuted under the MCS-4 banner, including 
RAM and ROM and a shift register tuned for the 4-bit multiplexed bus. 
With 2300 transistors fabricated in 10-micron silicon and running up to 
740 MHz, the 4004 had 16 internal registers and offered 46 instructions. 
[8] 

Feverish competition ensued as a slew of vendors created new 8-, 16-, 
and 32-bit microprocessor architectures during the late 1970s and early 
1980s from chip companies including Intel, Zilog, Motorola, and 
Signetics. Even with lengthy schedules and meticulous design checking, 
very few of these complex chips worked the first time. Design and fab 
costs continued escalating as transistor counts moved into the tens of 
thousands and beyond. Most of these microprocessor vendors had large 

fabrication facilities, and proprietary design flows tuned to their 
engineering standards and fabrication process. A sea of changes was 
occurring in VLSI (Very Large-Scale Integration), with several 
technological advances fanning the flames of semiconductor company 
competition. 

The first use of ASICs was as glue logic for improved integration of other 
discrete chips, or as companion chipsets to microprocessors, customized 

to a specific application. A growing roster of ASIC vendors eventually 
including AT&T, Fujitsu, IBM, LSI Logic, Plessey, Toshiba, TI, and VLSI 
Technology were working to harvest the economic benefits of the best 
abstracted design flow with chip design tools, IP libraries, and fab 
qualification. For the first time, design teams at a customer could create 
parts using a “standard cell library”, and get the design produced as a 
custom ASIC at moderate risk and reasonable lead times of a few 

months. 
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The average 32-bit microprocessor trended toward being bloated, with 
more transistors to execute complex instruction sets (CISC) with 
routine, and not-so-routine, operations and specialized addressing 
modes. Researchers focused on the flow of CISC instructions, deciding 
that instruction sets could be optimized for simplicity and performance, 
and came up with the idea of a Reduced Instruction Set Computer, or 
RISC. ASICs and RISC architectures then lead to new microprocessor 
companies, including MIPS Computer Systems, Sun Microsystems, and 
others producing new processor chip products to compete with Intel’s 
CISC architecture processor chip products. 

The Birth of Programmable Logic 

Early programmable logic devices (PLDs) were emerging in the mid-
1970s as an adaptation of early programmable read-only memory 
(PROM) technology. Read-only memories (ROMs) were a common 
staple of electronic system design – they were also commonly referred to 
as “non-volatile memory devices” (NVMs) because these memories 
would retain their contents upon the loss of power. ROMs would be 
programmed with information that might only be used at system startup 
and did not change during system operation, such as “boot ROM 
operations”, which enabled systems to automatically restart after every 
power cycle by implementing a minimum set of startup operations that 

would automatically execute after each incidence of power loss when 
power was eventually restored. Early bipolar (CMOS semiconductor 
technology was still in its infancy at the time) programable read-only 
memory devices (PROMs) emerged with memory densities from 256-bits 
(32 words by 8 bits) to 4K-bits (512 words by 8 Bits). PROM devices 
would be manufactured with all of the memory content in the same 
“state” (ONE or ZERO) and the user would “program” the PROMs with 

an application-specific content by applying prescribed voltages to the 
device pins in a prescribed sequence affecting selected wires (sometimes 
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called “fuses”) that would change the logic state of selected memory bits. 
The bipolar PROM programming process is an irreversible, “one-time” 
process – once the PROM was programmed, it could only be 
reprogrammed by changing any previously unprogrammed bits, but the 
previously programmed bits could not be changed again. In some cases, 
users would organize the PROM into “banks” of memory (where a bank 
was selectable with a most-significant memory address bit), and if the 
memory image needed to be changed, a different memory bank would 
be programmed with the new memory image. Since PROM 
programming was a physical process involving a wide variety of PROM 
devices from various semiconductor companies with a wide variety of 
PROM programming procedures – another product market was born to 
commercialize PROM programming products – eventually lead by 
companies like Data I/O. 

Imagine, if you will, the early bipolar PROM semiconductor technology 
required to effectively “melt” the semiconductor metal interconnects 
between transistors to permanently change the logical state of each 
selected memory bit – to produce devices that could be mass-produced, 
subsequently programmed in the field by users, and then be expected to 
operate reliably over time in production electronic systems. The affected 
metal layer interconnect needed to be “opened”, or removed, after the 
semiconductor manufacturing process, including packaging 

considerations that would tolerate the electrical currents necessary to 
only melt the selected interconnect, without any remaining metal 
fingers that might not render the electrical connection completely open, 
and no remnants of the violent microscopic physical event required to 
open the electrical connection would be “splashed” onto neighboring 
circuits and adversely affect their electrical integrity. 

Why all this fuss about building a field programmable logic device? 

Well, I don’t believe that the pioneers of early programmable logic could 
possibly have imagined that the programmable logic market would 
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explode the way it has into today’s FPGA market – almost a half-century 
later. At Signetics, a pioneer of programmable logic devices, 
management would need to be “sold” on the idea that existing Signetics’ 
MSI and SSI logic device customers would rush to buy high volumes of 
these new, more highly integrated logic devices. At the time, if you were 
building almost any commercial digital system, you would buy boatloads 
of the MSI and SSI logic devices, mount them on printed circuit boards, 
and either hard-wire the interconnect with board-level metal traces, or 
use “wire-wrap” techniques to connect the socketed logic devices. It was 
not uncommon to spend long hours of logic system debug time with a 
wire-wrap gun, and wire-wrap wire removal tool, to bring-up new digital 
systems. The only options at the time for a higher density 
semiconductor implementation of a complex digital system were the 
newly emerging microprocessors that could implement the required 
logical functionality in software, or, if the expected end-product 
production volume was high enough to justify the cost, custom silicon 
ASICs. 

Signetics and Intersil were two of the first semiconductor companies to 
offer programmable logic devices by adopting their PROM programming 
technology to logic devices. Signetics, who was a market leader in 
bipolar PROMs, as well as a leading supplier of MSI and SSI logic devices 
(7400 and 74S series), began offering bipolar programmable logic 

devices in a 28-pin plastic package adapted from their line of MSI and 
SSI logic devices. 

Signetics called these devices fuse Programmable Logic Arrays, or 
FPLAs. FPLAs were simple at first: field programmable by the user, 16 
inputs variables, 48 programmable product terms (or P-terms), and 
eight outputs functions (16 x 48 x 8). Signetics named this product the 
“PLS100”, and claimed it was fully supported by “industry standard 

(JEDEC compatible) PLDCAD tools for designing the logic function to 
be implemented, including Signetics’ SNAP, Data I/O Corporation’s 
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ABEL, and Logical Devices Inc.’s CUPL design software packages.” [9] 

 

Figure 4: Signetics PLS100 Programmable Array Logic Diagram 

Another breakthrough was near. Altera took an idea from the research 
halls of GE, combining the elements of EPROM memory (Erasable 
PROM) with CMOS floating logic gates, and added synthesis software in 
1984. A logic design for the Altera EP300 could be created on a PC in a 
week or so using schematic capture, state machine, or logic table entries. 
Parts could be “burned” (programmed) and easily erased with ultraviolet 
light – and then reprogrammed as needed, in a matter of hours. 
Customers with conventional digital logic schematic entry skills had 
access to relatively high levels of customization with very low 
turnaround time.  

 

Figure 5: Altera EP300 programmable logic device 
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A different technology appeared on November 1, 1985, with the 
thundering headline, “Xilinx Develops New Class of ASIC”. [10] The 
XC2064 logic cell array was RAM-based, loading its configuration at 
boot time. Soon to be labeled by the media as a field programmable gate 
array or FPGA, these first parts featured 1200 gates, offering more 
scalability and higher performance. Logic could be simulated on a PC, 
and in-circuit emulation aided in functional verification. 

Pre-Silicon Becomes a Thing 

With programmable logic in its infancy, VLSI designs were still territory 
for ASICs. Even “moderate risk” using ASIC technology was still a 
significant risk. The SPARC I processor took four re-spins to get right. In 
contrast, the ARM1 processor at Acorn Computers powered up and ran 
on its first arrival from VLSI Technology in April 1985 – a minor miracle 
that shocked its creators and still stirs amazement. 

From Calma and Applicon came the first EDA tools from pioneers Daisy, 
Mentor, and Valid which were adapted from Calma and Applicon circuit 
board design – to ASIC design tasks. [11] Rather than capturing a design 
and “tossing” it into silicon and hoping for good results, more emphasis 
was being placed on design verification to confirm correct operation 
prior to committing to silicon. EDA workstations were relatively fast, but 

the simulation of a VLSI design was still a tedious and slow process – 
requiring a great deal of skill to create a testbench that would provide a 
comprehensive set of stimuli and expected responses. 

In many cases, ASIC simulation was cheaper than a failed piece of 
silicon, which meant more dollars and several more months waiting for 
a silicon fix. [12] Nonetheless, some designers resigned themselves to 
accept that it was not possible to “get it right” with one spin of silicon, 

and literally planned for the inevitable re-spin (or two) and set a goal to 
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“minimize” the number of re-spins to 2 or 3 rather than plan to eliminate 
re-spins. 

Major chip design innovation was happening at Intel. Thanks to the 
success in PC markets, its microprocessor families evolved rapidly. The 
design of the first mainstream PC processor, the 8088 released in 1979, 
involved painstaking human translation of logic gate symbols into 
transistors. For the 80286 debuting in 1982, an RTL (register transfer 

level) model drove high-level design and timing analysis, but manual 
translation into transistor structures was still necessary. The 80386 
launched in 1985, was a 32-bit extension of the 80286 architecture 
requiring 275,000 transistors, [13] and saw a wider use of RTL synthesis 
and a move toward CMOS standard cells, with only several specific logic 
blocks which were hand-optimized. 

If Intel was to continue its winning streak, it needed a breakthrough in 

design productivity. They knew that they would not be able to hire 
enough chip designers to keep up with the anticipated growth in 
processor design complexity. Development processes had to change to 
require fewer engineers and shorten the design cycle time for 
increasingly more complex parts. In 1986, Intel made a $250M 
investment for its next microprocessor design, including a proprietary 
system of EDA tools and practices. To enable fully automatic synthesis 
of layout from RTL, teams created iHDL, built logic synthesis tools from 
code developed at the University of California, Berkeley, and formalized 
and extended its standard cell libraries. The result was the 80486 in 
1989, breaking the one-micron barrier with a staggering 1.18M 
transistors. [14] 

Even with these investments in tools and processes, Intel knew that 
software-based simulation was too slow. RTL simulations were chewing 

up more than 80% of Intel’s EDA computing resources, and the 
verification effort was growing non-linearly with processor size. Intel 
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was focused on reducing the verification effort and made it a priority to 
find a better way. A new verification solution would come from an 
unexpected source: a small startup company – Quickturn Design 
Systems. Quickturn was founded in May 1988 by Mike D’Amour and 
Steve Sample from Daisy Systems, and they envisioned a new type of 
verification platform targeting chip designers. Their first FPGA 
prototyping product was called the Rapid Prototype Machine (“RPM”) 
using an array of Xilinx XC3090 FPGAs. Quickturn’s early software could 
take an ASIC netlist of tens of thousands of gates, partition it into a large 
array of FPGAs, and model chip design functionality that could be run 
much faster than other verification methods available at the time. [15] 

 

Figure 6: Quickturn Systems RPM datasheet 

In the beginning, Quickturn was struggling with what to call their new 
technology – what we call “Emulation” today. When Quickturn first 
talked with potential customers about Emulation for ASIC design 
verification, it was a time when software simulation, hardware 
accelerated simulation, and FPGA prototyping were all commonly used 
for design verification in varying combinations – and hardware 
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Emulation was unknown and different from the other available 
verification approaches. Traditional software simulators used a “timing 
wheel” approach to model the propagation of signals through the design 
logic with each “tick” of the design clock. The propagation of signals 
through each and every logical element of the design would be evaluated 
for each clock cycle, and then the evaluation would be repeated for each 
subsequent “tick” of the design clock – like a “wheel” that completes one 
turn with every clock cycle using the propagated signals from the 
previous clock cycle to stimulate every logical element of the design on 
the next clock cycle. 

Simulation accelerators were also timing wheel-based engines using 
specialized hardware, and were faster than software simulators running 
on servers, but accelerators were still orders of magnitude slower than 
running the design on an FPGA hardware implementation. At the time, 
FPGA prototyping was mostly relegated to small designs that could fit 
into a single FPGA, and was a primitive, highly manual process, not 
considered for large designs that required multiple FPGAs connected 
together into a single large “sea of gates”. Further, because FPGA 
suppliers considered FPGA design tools to be an enabler to selling 
FPGAs chips, pricing for these tools was inherently depressed – the 
FPGA suppliers basically gave the tools away as a necessary selling cost 
for selling the FPGAs. FPGA suppliers were in the business of selling 

FPGAs, not design tools, and consequently, the economic incentive for 
EDA companies to invest in innovation was impaired. 

In early discussions with potential customers, Quickturn customers 
would ask: “Do you mean simulation acceleration?” The answer would 
be, “no, it’s much faster.” Then the customer would ask: “Do you mean 
FPGA prototyping?” Again, the answer would be “no,” because FPGA 
prototyping at the time referred to a highly manual process that lacked 

serious automation for implementing the prototype. What Quickturn 
was developing was different from simulation, simulation acceleration, 
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or the FPGA prototyping of the day, so Quickturn searched for a new 
“category name” that was not “simulation”, and was not “FPGA 
prototyping”. To clearly differentiate this new verification method, 
Quickturn would eventually choose the name “Emulation”, and 
“position” a new “market category” in the minds of customers – 
something different yet similar to the already familiar verification 
methods of the day. 

Positioning: The Battle for Your Mind 

The Al Ries’ and Jack Trout’s book “Positioning: The Battle for Your 
Mind,” [16] was an inspiration to Quickturn at the time, and they rallied 
behind several of the book’s concepts to position Emulation in the 
hierarchy of existing verification tools: 

“‘It’s better to be first than it is to be better’ is by far the most powerful 
positioning idea.” 

“‘If you can’t be first in a category, then set up a new category you can be 
first in’ is the second most powerful positioning idea.” 

“The mind has no room for what’s new and different unless it’s related to 
the old.” 

The Ries and Trout positioning concepts were, in part, what led 
Quickturn to choose the name “Emulation”. Quickturn’s Emulation 

became the “first” in a new “chip design verification category”, and 
Quickturn began positioning Emulation as it “compared to” simulation, 
and FPGA prototyping – faster than simulation, and easier to deploy 
than FPGA prototyping. Later, after Quickturn realized how difficult 
Emulation actually was to set up and use when compared to simulation, 
and after they had already established the Emulation category, they 
doubled down and coined the phrase: “Damned hard, but well worth the 

effort” – then they worked diligently to create compelling and plausible 
ROI scenarios to defend the cost and effort of deploying Emulation, with 
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an emphasis on lost revenue attributable to delayed time-to-market 
(TTM). 

 

Figure 7: Lost Revenue Due to Delayed Time-To-Market  

First Pentium Emulation 

Getting back to the story about Intel’s “discovery” of Quickturn and their 
new Emulation products – Intel was in the early stages of designing the 
Pentium P5 processor, and the P5 project managers were desperate to 
find new innovative ways to reduce the P5 verification effort. One of the 
engineers assigned to the P5 verification team in the late 1980’s, Azam 
Barkatullah, took this challenge to heart and on a sunny California day 
he happened to be driving by Quickturn’s headquarters in Mountain 
View, California, when he saw a Quickturn sign that caused him to stop 
his car and go inside. Quickturn was still a young EDA company 
struggling to establish itself in the EDA market. Azam met with 
Quickturn’s management who explained how their new verification 
technology might be applied to the P5’s daunting verification challenge 
and reduce the TTM. Armed with RPM Data Sheets and a vision for “In-
Circuit Emulation” for more accurate system-level verification, Azam 
returned to Intel to report the discovery to his management. Intel 
quickly realized that if they could model the P5 in FPGA hardware, and 
plug a hardware Emulation of the P5 into a real PC prior to silicon, they 
could run real software on the Emulated P5 design – and they might be 
able to substantially reduce the time it would take to get through a 
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rigorous verification process faster and with fewer resources. Intel’s 
Pentium CPU Validation Goals would eventually become: [17] 

Ensure backward compatibility with previous generations of 
processors. 

Run real-world operating systems and applications pre-silicon to 
validate the design. 

Pentium project management arranged to meet with Quickturn 
management to negotiate a deal to acquire enough RPMs for P5 
verification, but at the time they didn’t know how many RPMs it would 
take. A fully configured RPM at the time was expected to support about 
150,000 “equivalent ASIC gates”, but the P5 had not been designed as an 
ASIC – it was a full custom design, and the concept of equivalent ASIC 
gates simply did not apply. Without any better options, Intel pushed 
forward and eventually a business deal was struck on a “project basis”, 
where Intel would pay a base project fee with milestone-based bonuses, 
and Intel would get “as many RPMs as it took” to Emulated the P5. 
Under the terms of the deal, Intel would not need to purchase more 
RPMs than they needed at the start of the project, and they wouldn’t 
need to negotiate the price of each additional RPM if they 
underestimated the number of RPMs they needed at the start of the 
project. Quickturn also knew that considerable marketing value would 
be derived from successfully Emulating the P5 processor running 
software while plugged into a real PC –prior to silicon. 

A large part of Quickturn’s early differentiation story was that an 
Emulated design could be connected directly to a real target-system, and 
this would become a very compelling justification for adding Emulation 
to a complex chip verification flow to reduce TTM. Quickturn would 
claim that the only sure way to verify that a chip design would work in a 
target-system prior to silicon was to connect the chip design to a real 
target system with what was called “In-Circuit Emulation” (ICE). ICE 
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became a compelling value proposition for pre-silicon chip Emulation. 
ICE was accomplished by connecting the Emulated chip design’s I/O 
signals to one end of a flat multi-pin cable (or several cables), and the 
other end of the cable would be “plugged into” a real target system 
where the chip would eventually be plugged when the chip was available 
in silicon. Of course, the Emulation would run slower than the real 
silicon, but it was still orders of magnitude faster than simulation-based 
verification, and it would run fast enough to sustain target-system 
operation running real target-system software – prior to silicon tape out. 
ICE would also provide the verification benefit that the target system 
would, by its nature, subject the emulated chip design to real-world 
stimulus, which is the ultimate determiner of functionally correct chip 
operation. 

Azam’s four-man emulation team mounted a heroic effort to get the P5 
Emulation up and running on Quickturn RPMs with the expectation 
that it would significantly reduce the P5 verification effort and accelerate 
TTM (also referred to by Intel as “time-to-money”). Azam’s team worked 
18-hour days converting the custom P5 design into synthesizable HDL, 
partitioning the design into RPM-sized blocks, assigning the blocks to 
RPMs, mapping the RPM interconnect to cables between the RPMs, 
physically connecting all of the interconnect cables between the RPMs, 
and connecting the cables for ICE to the target system. 

Intel used a combination of Quickturn design tools and Intel design 
tools to develop a design flow for transforming the P5 HDL description 
into FPGA bit files that could be loaded into the RPMs with cables 
connecting the RPMs. The P5 design was created in Intel’s proprietary 
HDL, which at the time was not synthesizable. For silicon production, 
Intel would hand-translate its proprietary HDL into a transistor layout, 
but Intel’s proprietary HDL could not be used directly for RPM 

Emulation – it needed to first be manually translated into a 
synthesizable HDL. Azam’s team then partitioned the P5 design into 
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blocks of logic that would fit into the RPMs, paying special attention to 
the required RPM interconnecting cables. The team knew the Emulated 
design implementation would be different from the P5 silicon design, 
but they worked diligently to build the best possible adaptation of the 
P5 design for Emulation that would be logically correct even if the 
timing had to be manipulated to meet the constraints of the RPMs. For 
example, some P5 embedded memories were implemented with 
“hardware adapter modules” that used actual memory chips outside the 
FPGAs, connected to the RPM backplane and then to the Emulated 
design inside of the RPMs. The P5 design was organized into blocks and 
the blocks were grouped together to create larger blocks with gate 
counts that were expected to fit into a single RPM – it took 7 RPMs for 
integer operations, 4 for caches, and 3 for floating point. Then the 
interconnect signals between the RPM design blocks were assigned to 
flat ribbon cables that would be connected between RPM’s. It would 
eventually take 14 RPMs arranged in a U-shape, with half of the RPMs 
sitting on top of the lab tables, and the other half of the RPMs on the 
floor under the lab tables. Unwieldy as it appeared, the U-shaped RPM 
arrangement proved to be the optimal scheme for connecting the many 
cables that would be required between the 14 RPMs. Try to imagine 14 
RPMs, stacked two high on the P5 lab tables arranged in a U-shape with 
a “pile” of dozens of flat ribbon cables crisscrossing the lab floor between 
the RPMs – later we’ll reflect on this image to imagine an Emulation of 
Intel’s next Pentium processor, the P6. 

When the P5 design needed to be changed during the verification/debug 
process, and it was certain that it would need to be changed, the affected 
Emulation blocks would need to be recompiled (HDL to FPGA 
programming bit files) and, if the design change affected the RPM 
cables, the Emulation cable connections would need to be changed. That 
is, cables needed to be carefully disconnected from one RPM and 
reconnected to another RPM. Changing cables between RPMs made P5 
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Emulation changes slow and error-prone. Eventually, as the P5 design 
stabilized during the debug process, fewer changes were required to the 
Emulation. The cables would also limit the Emulation speed because of 
the signal propagation time across the cables between RPMs. The final 
P5 Emulation speed was eventually arrived at by “trial and error” – 
timing analysis was rudimentary at the time – and the Emulation clocks 
were simply turned down to about 300KHz until the functionality was 
correct. 

It took Azam’s team 4 to 5 months to get the P5 Emulation to a state 
where they could boot the DOS operating system and run software 
applications on a real target PC. In November of 1991, Albert Yu, an Intel 
VP at the time, was attending a forum for PC companies and software 
developers, and he “dialed into” (remember dial-up modems?) Azam’s 
Emulation lab and ran a Lotus 123 spreadsheet application on the P5 
Emulation from a remote terminal. The forum attendees were 
astonished that a P5 model was already working. It was said that 
Compaq Computer Corporation was planning to switch to a RISC-based 
PC at the time, but six months after the Albert Yu presentation at the 
November forum, Compaq scrubbed their plans to switch processors. 
The P5 Emulation was considered a success. The P5 Emulation team 
identified at least one critical design bug prior to tape-out, the first tape 
out of the P5 was functional (although not at speed), Albert was able to 

impress a crowd of product developers and potential customers with a 
demonstration of early P5 design maturity that may have saved at least 
one considerable business deal for Intel, the P5 Emulation was credited 
with shaving “a few months off the P5 production ramp” leading to a 
timely release of the Pentium processor in March of 1993. [18] And, 
Quickturn had a legend-worthy Emulation success story that they would 
use to encourage countless other prospective Emulation customers to 
invest in Emulation. 

The P5 story was such a clear success that any reasonable observer 
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would have assumed that Intel would have gone on to repeat the P5 
success on the P6 project. Well – Intel did engage Quickturn again to 
Emulate the P6, but the P6 story had a very different ending than the P5 
story. Earlier in this section, the reader was asked to imagine 14 RPMs, 
stacked two high on the P5 lab tables arranged in a U-shape with a “pile” 
of dozens of flat ribbon cables crisscrossing the lab floor between the 
RPMs. When Intel moved to Emulate the P6 design, they realized that 
the Emulation technology of the day was not scaling at the same pace as 
their processor complexity. The P6 design was about four times the gate 
complexity of the P5 design. The P6 Emulation required more than 40 
RPMs, and dozens more interconnect cables between the RPMs! The P6 
Emulation build took much longer, design changes were much harder, 
and it was not credited with the pre-silicon discovery of any critical 
bugs. Intel discontinued Emulating processor designs after the P6. 

Enabling Exploration and Integration 

The Quickturn RPM, implemented with standard Xilinx FPGAs, was the 
first commercial hardware emulator and became an essential ASICs 
prototyping tool for well-funded companies. Following Quickturn’s 
success with Emulation, more advanced hardware emulators and FPGA-
based prototyping platforms were developed – and they took divergent 
paths for different use cases. 

Hardware emulators evolved to be highly automated, and only 
affordable for large chip projects and broader application for multi-user, 
multi-design projects. A user need not know the details of the logic 
implementation, or how internal design interconnects are organized on 
the hardware. A netlist for an ASIC is loaded by the Emulation software, 
chopped into arbitrary partitions, and the partitions are spread out 
across the hardware – implemented with tens or hundreds of devices. 

These partitions are subject to a relationship known as Rent’s Rule, 
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describing an empirically determined ratio of logic gates to interconnect 
pins. As general purpose FPGA logic capacities increased, FPGA pin-
count growth did not keep up and retain interconnect limitations got 
worse for arbitrary partitions of a design, requiring even more FPGAs to 
accommodate large netlists. Eventually, emulator providers moved from 
FPGAs to ASIC-based designs. The price of tossing more hardware at the 
problem is steep, however – today’s high-performance hardware 
emulators can cost over $1M. 

FPGA prototypes are more design specific, and often configured and 
tuned for a specific project. Assuming adequate logic capacity and 
interconnect pins, a design can be synthesized for a single FPGA device, 
or perhaps partitioned across a handful of devices with optimized 
interconnect between the devices. Rent’s Rule becomes more 
manageable for a design of moderate size. This is the basic premise of 
FPGA-based prototyping, which gives the appearance of becoming more 
and more attractive as FPGA logic capacities improve. [19] 

 

Figure 8: FPGA gates versus pin count, courtesy Cadence 

What really makes the case for FPGA-based prototyping is not a change 
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in FPGAs, however, but changes in system design practices and 
objectives. The type of design starts typically in the industry evolved 
dramatically, looking less often like an enormous Intel microprocessor. 
System-on-chips, microcontrollers, application-specific standard 
products (ASSPs), and other designs take advantage of a growing field of 
IP for customized implementations. 

Reuse and integration are now paramount. Stand-alone verification of 

individual IP blocks is cost-effective using FPGA-based prototyping. 
Third-party IP, existing internally designed IP blocks, and new internal 
development can then be combined, with partitioning and test artifacts 
reused to aid in the process. 

Design exploration is feasible, especially for software teams that can 
afford to provide FPGA-based prototyping platforms to lots of 
developers. What-if scenarios run at the IP-block level can explore 

software tradeoffs or minor hardware architectural tradeoffs, not just 
functional fixes. These results can be rolled up quickly to the full-up 
design, perhaps resulting in a critical product pre-silicon enhancement. 

More FPGA-based prototyping platforms are integrating actual I/O 
hardware, usually with a mezzanine-based approach, instead of 
emulating I/O with a rate-adapter of some type. This is an important 
factor for complex interface and protocol verification. It can also be a 
deciding factor in safety-critical system evaluation, where validation 
using actual hardware is essential. 

At the high-end, FPGA-based prototyping is scaling up. Platform-aware 
synthesis is improving partitioning across multiple FPGAs, allowing 
larger ASIC designs to be tackled. Cloud-based technology is connecting 
platforms and developers via the internet. Debug visibility is increasing, 

with approaches including deep-trace capture and automatic probe 
insertion. Integration with host-based simulation and graphical analysis 
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tools is also improving steadily. 

The inescapable conclusion is, if a chip project is to “start”, it had better 
finish with robust silicon quickly. New applications, particularly the 
Internet of Things, may reverse a trend of declining ASIC design starts 
over the last decade. Design starts are likely to be smaller and more 
frequent, with highly specialized parts targeting niche markets. 
Advanced requirements in power management, wireless connectivity, 

and security are calling for more intense verification efforts. 

FPGA-based prototyping, as we shall see shortly, is rising to these 
challenges for a new era of chip design. 
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Design Exploration 

It is common wisdom today that early discovery of design problems 
during product development reduces the cost to fix the problems – 
especially with complex SoCs. It is also common wisdom that the cost to 
fix problems increases by 10x or more after silicon implementation and 
increases another 10x when the product gets into the hands of 
customers. These cost factor increases are most certainly understated for 
high-volume or high-priced products. The challenge of early problem 
discovery is amplified by rapidly increasing SoC design complexity and 
cost, high software content, and the declining TTM tolerated by 
competitive markets. Consequently, the pressure on electronic system 
designers to get it right early has never been higher – and can only get 
more intense. These considerations led to the definition of the term 
Electronic System Level design, or ESL Design, by Gartner Dataquest in 
2001. [20] The term was defined as "the utilization of appropriate 

abstractions in order to increase comprehension about a system, and to 
enhance the probability of a successful implementation of functionality 
in a cost-effective manner." [21] 

SoC-based designers are highly incentivized to model key system 
capabilities to verify key system parameter targets such as performance, 
power, silicon area, and functionality – early in the development process 
and at a high level of abstraction. These design abstractions are 

implementation-independent, consider system-level dependencies, can 
focus on isolated critical aspects of the design, are easy to refine (low 
effort), and the added verification complexities of implementation 
details are deferred until later in the development process. Many of the 
key system parameters are locked in by early architecture decisions and 
cannot be changed significantly after a certain point in the 
implementation process. As the design matures, additional levels of 
implementation detail are added to the process, solidifying parts of the 
design, and increasing the “weight” of the design (effort needed to 
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change) as it converges (hopefully) to the final product. During this 
design maturation process, critical sections of the design may be 
modeled using familiar design verification tools that would not normally 
be expected to come into play until later in the development process – 
such as FPGA prototyping. Algorithm performance, video imaging QOR, 
and network throughput are examples of where FPGA prototype 
modeling is finding increasing use in ESL. 

Thus, the importance of design exploration during early product 
definition is considered by some to be the most critical stage of any 
development project – in which optimizations of the architecture are the 
least costly to realize in time and effort. ESL Design allows system 
architects to play “what-if” games with system partitioning and quickly 
evaluate different implementation alternatives – which parts should be 
implemented in hardware and which parts should be implemented in 
software. According to a 2018 article in Semiconductor Engineering; [22] 
“The architecture space was, is, and always will be, a relatively small 
number of users that use every tool in their arsenal, with Excel being 
probably the most used.” The article goes on to assert, “The classic 
architecture analysis dilemma remains an issue: decisions must be made 
as early as possible to be effective; and to make effective architecture 
decisions, architects would like the accuracy of models that are only 
available once the implementation is decided.” The article continues; 

“As a result, there is a clear bifurcation in the architecture space with 
very abstract models that are used pre-implementation on the one hand 
(using languages like The Mathworks M or graphical definitions like in 
National Instruments LabView) and cycle-accurate representations in 
RTL or SystemC on the other.” 
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Figure 9: MatLab Parallel Computing Toolbox 

So it is that classic hardware verification tools such as FPGA 
prototyping, together with transaction-level testing, are increasingly 
finding their way into the Design Exploration space for architecture 
optimization decisions. Again, from the Semiconductor Engineering 
article about ESL Design: “The products in this space simply bridge the 
classic verification space into the system level—one could argue by 
‘brute force’. You want to boot an operating system like Android or 
Linux, and you need the hardware implementation detail, hence cannot 
use abstraction? Here, use my emulator or FPGA-based prototype that 
runs in the MHz or 10’s of MHz range, respectively, compared to the Hz 
or low KHz range in host-based RTL simulation that would take weeks 
to boot the OS. This area is somewhat of a gray space because the 
primary use of emulation is hardware verification, and the primary use 
of prototyping is software development—but the lines are blurry as 
emulation extends into software, especially with virtual-platform-
emulation hybrids, and prototyping extends into hardware verification 
for regressions once the RTL gets more stable.” 

To facilitate early Design Exploration, ProtoBridge from S2C provides a 
high bandwidth data channel between software models running on a 
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host PC and the FPGA prototyping hardware. ProtoBridge consists of C-
API for users, software drivers for the host PC, PCIe-based connectivity 
hardware between the host PC and the Prodigy Logic System, and a 
PCIe-to-AXI bridge to interface with the user design blocks. 

 
Figure 10: S2C ProtoBridge solution 

In August of 2020, S2C announced a collaboration with Mirabilis Design 
to deliver a hybrid SoC architecture exploration solution that reuses 
available RTL-based blocks to accelerate model construction and 
complex simulations. Mirabilis Design’s VisualSim interfaces with S2C’s 
FPGA Prototyping solution, Prodigy Logic System, to model a functional 
block of the design in which the FPGA prototype acts as a sub-model 
and provides accurate simulation responses for architecture exploration. 
The collaboration enables the RTL behavior modeled through FPGA 
prototyping, to be easily integrated into an ESL model to create a virtual 
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platform. The model can be simulated to gather metrics on response 
times, throughput, power consumption, and correctness of data values. 

 
Figure 11: VisualSim Modeling, Simulation, Exploration and Collaboration 
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IP Development 

Brief History 

Semiconductor Intellectual Property (IP) may be defined as “a reusable 
unit of logic, cell, or integrated circuit layout design that is the 
intellectual property of one party. IP cores can be licensed to another 
party or owned and used by a single party.” [23] While IP licensing 
became a common practice in the 1990’s, the development and the use 
of IP by companies developing ASICs and SoCs for its own internal use, 
or as a paid service to other companies, or by semiconductor foundries 
to enable customer wafer production, has been around much longer. 

The conceptual benefits from IP reuse were identified early by a few 
prescient technologists at large electronic companies (HP, Sun 
Microsystems, etc.) well before the commercial IP market enjoyed the 
vibrance that it does today. Internal company standardization of certain 
IP blocks was seen as an opportunity for improved ASIC development 
efficiency across multiple internal ASIC projects developing its own 
versions of essentially the same functionality – at the same time with 
little or no cooperation between the projects. As an added benefit, 
standardization and reuse would assure compatibility between all the 
company’s different implementations of the same IP functionality 
(incompatibility between different internal development efforts of the 
same IP functionality in the same company actually occurred!). As an 
interesting historical note, and as is often the case when large companies 
try to standardize design practices, there were inefficiencies associated 
with early IP standardization efforts which tried to impose an IP reuse 
standard interface on all internally developed IP (to assure easy reuse by 
all internal projects) before the IP was allowed to be added to the 
company’s IP library. It was a well-intended and conceptually valid 
constraint, but the internal IP user community resisted adoption 
because of the area and performance penalties associated with the 
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company-imposed IP reuse standard interface itself. 

One EE Times article attempted to simplify the essence of 
Semiconductor IP with a few rhetorical questions and answers: 

“Question: What is the central issue facing the system-on-chip chip 
design community? Answer: Design costs.  

Q: How to cut costs? A: Design reuse.  

Q: What is the challenge of design reuse? A: Intellectual-property 
verification.” [24] 

We will return to the topic of IP verification later. However, this nod to 
IP verification reflects the criticality of well-verified IP to unlocking the 
potential value that Semiconductor IP can bring to SoC developers. 

IP Market 

According to a report by MarketsandMarkets, the global Semiconductor 
IP market is estimated to be $5.6 billion in 2020 and projected to reach 
$7.3 billion by 2025. [25] The report cited the “Key factors fueling the 
growth of this market include the advancement in multicore technology 
for the consumer electronics industry, increasing demand for modern 
SoC (system on chip) designs, mitigation of the continuously rising chip 
design cost and expenditure, growing adoption of connected devices for 
daily use, increasing demand for electronics from healthcare industry 
due to COVID-19, and increasing demand for teleconference 
instruments amid the COVID-19 pandemic.” 

Another report by Verified Market Research projects similar numbers 
for the Semiconductor IP Market size, pegged at $5.3 billion in 2019, 
growing to $7.4 billion by 2027. “Various factors that are driving the 
growth of the Semiconductor IP Market are growing production of 

mobile devices and use of electronic devices such as smartphones and 
tablets. Also, risen (sic) demand of modern system on chip (SoC) design 
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and reduction in design and manufacturing cost is boosting demand for 
Semiconductor IP Market.” [26] 

 

Figure 12: Global Semiconductor IP Market, 2020-2027 

A third report published by Polaris Market Research is a little more 
aggressive and anticipates the Semiconductor IP market will be $9.3 
billion by 2026. [27] “Rising demand for modern System on Chip (SoC) 
design, and growing need to reduce manufacturing and design cost 
boost the Semiconductor Intellectual Property market growth. 
Advancement in multicore technology for consumer electronics further 
supports the growth of the Semiconductor Intellectual Property market.”  
[28] 

Semiconductor IP is generally categorized by functionality: processor 
(ARM, RISC-V, Arc, Tensilica, etc.), foundation IP (memory, standard 
cells, etc.), on-chip interconnect IP (AMBA, NoC, etc.), standards-based 
interface IP (PCIe, USB, DDR, HDMI, MIPI, etc.), video CODEC IP, and 
analog and mixed-signal IP (PLL, ADC, DAC, PHY, etc.). 

Today’s commercial IP market is dominated by a few large EDA 
companies, which offer a rich selection of pre-tested, off-the-shelf IP. 
According to a June 2019 Design & Reuse article, the top 6 
Semiconductor IP suppliers were expected to dominate the commercial 
IP market in 2019 (by revenue); Arm Holdings (40.8%), Synopsys. 
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(18.2%), Cadence (5.9%), SST/Microchip (2.9%), Imagination 
Technologies (2.6%), and Ceva (2.2%) – with these 6 IP suppliers 
expected to account for over 70% of the 2019 commercial IP market. [29] 

 

Figure 13: Semiconductor IP Suppliers by Revenue, Worldwide, 2018 and 2019 (Millions 
of Dollars) 

While the revenue figures from these commercial IP supplier reflect the 
level of investment in commercial IP by SoC developers, they do not 
comprehend the investment by large fabless semiconductor companies 
that are developing their own IP for internal use on their own SoCs (e.g. 
Intel, Broadcom, Marvell, Qualcomm, etc.). Combining the commercial 

IP market with what is surely a huge internal investment in IP by large 
fabless semiconductor companies, it is abundantly clear that 
Semiconductor IP has become critical to the timely delivery of 
competitive SoCs – driven by the need to mitigate rapidly rising SoC 
development costs and complexities by leveraging large blocks of proven 
IP to reduce TTM, and focus SoC development efforts on core 
competencies for product differentiation. 

Soft and Hard IP 

Soft IPs are delivered as synthesizable RTL models or synthesized gate-
level netlists. The IP supplier will usually include some verification aids 
with the Soft IP to assist the user with verifying the functional behavior 
of the IP, and sample scripts to assist the user in synthesizing the Soft IP 
into a physical implementation – a process called “IP hardening”. 
Generally, digital logic functionality is delivered as Soft IP (RISC-V 
processor cores, PCIe controllers, DDR controllers, etc.). A notable 
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exception is “foundation IP”, a category of digital functionality which 
includes memories and standard cell libraries, and this soft IP comes 
with soft views (abstract representations of memories and gates), and 
hardened views (more on this later) of the functionality. Most digital 
SoCs are composed primarily of memories and standard cell libraries, so 
this category of Soft IP is critical to the fabrication of any SoC and is 
fundamental to the verification of any Soft IP. 

Prior to hardening, the Soft IP will be integrated into the complete SoC 
by the IP user, eventually at the gate-level, and the SoC will be 
rigorously verified for correct functionality, performance, and power 
consumption. SoC verification at the gate-level for performance, power, 
and area can produce highly accurate results because the gates that are 
used for hardening will have been derived from a foundry-specific IP 
library (foundation IP) that has been characterized for that specific 
foundry, a foundry-specific process node (20nm, 16nm, etc.), and a 

foundry-specific process variant (high-performance, low power, etc.). 
Some IP only has internal SoC connections (DMA controllers, PICs, 
AMBA, etc.) and must only be verified for correct internal SoC 
functionality. Other IPs having internal SoC connections and 
connections to the system outside the SoC require system-level 
verification. 

The Soft IP gets hardened together with the rest of the SoC when the 

SoC is synthesized by the IP user into a physical silicon implementation 
– meaning that the gates (and memories, etc.) are converted to physical 
silicon transistors (also called “polygons” for the shape of the layered 
elements that comprise each transistor in silicon), and the interconnect 
wires that connect the gates, memories, etc. After the hardened SoC is 
verified, it undergoes additional physical verification for compliance 
with the foundry’s process design rules. At the end of the hardening 

process, the SoC design is converted to another format (GDSII) that is 
used to produce “masks” for manufacturing the SoC in silicon, and a 
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mask set (40 to 50 layers at 28nm, while 5nm could have 100 layers [30]) 
for an advanced silicon process will cost millions of dollars for each 
mask set. 

Another advantage of Soft IP is that it can be targeted by the IP user for 
any foundry processes (depending on available foundation IP) by 
synthesizing the SoC with foundry-specific foundation IP and going 
through the hardening process. Some large electronic companies have 

developed “portable libraries” that enable the same design to be 
fabricated by multiple foundries to assure continuous production supply 
in times of high silicon demand (also referred to as “multiple foundry 
sourcing”). The portable libraries approach has encountered some 
isolated glitches – occasionally, subtle differences would be discovered 
between foundation IP from different foundries (e.g., drive strengths) 
that would delay, or outright prevent, targeting the design for a specific 
multiple foundry source alternative.  

Hard IP, unlike Soft IP, will have already been hardened by the IP 
supplier before it is delivered to the IP user. Generally, analog and 
mixed-signal functionality are delivered as Hard IP (SERDES, PCIe 
PHYs, DDR PHYs, PLLs, ADCs/DACs, etc.). Hard IP has been optimized 
by the IP supplier for performance, power, or area and will have been 
characterized over multiple “process corners”, for the targeted foundry 
process. According to João Geada, chief technologist at ANSYS, from a 
Semiconductor Engineering article, “The foundry doesn’t produce exact 
copies of transistors or chips. It’s not an exact process. There’s some 
random variability. To a certain extent, that’s kind of hard to deal with 
from an engineering point of view. Process corners are, in a way, an 
attempt to put the bound on what comes out of the foundry – what’s the 
fastest something can happen, what’s the slowest, what’s the worst 
power, what’s the least power? There are multiple dimensions that you 

need to take into account, but you’re trying to basically put a box around 
what will come out [of] the foundry; the corners are the edges of that 
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box.” The article asserts that “The number of corners that need to be 
checked is exploding at 7nm and below, fueled by everything from 
temperature and voltage to changes in metal.” [31] 

Unlike Soft IP, Hard IP cannot be targeted by the IP user for a different 
foundry process. Some large consumers of silicon with close foundry 
relationships will go to great lengths to get the earliest possible start 
with the newest foundry process. They do this by designing with the 

foundry’s pre-production release silicon characterization data 
(sometimes referred to as “guess numbers”), schedule their final SoC 
production tape-out to coincide with the later release of the final 
production silicon characterization data, have the IP supplier re-
characterize the IP with the final characterization data ASAP, and re-run 
final physical verification on the SoC design just before tape-out. 
Usually, the differences between the “guess numbers” and the final 
production characterization data are inconsequential – so everything 
goes as planned – usually. 

IP Verification 

So, what’s all the fuss about IP verification? Well, it's fundamental – it's 
foundational – it's critical to the realization of the two primary benefits 
of Semiconductor IP: 

 the mitigation of soaring SoC development costs in the face of 
rapidly increasing design complexities, and  

 the reduction of TTM in highly competitive markets.  

Although much of the IP verification burden will be borne by the IP 
supplier before the IP ever reaches the IP user, the ultimate authority of 
correct IP operation is the SoC user – the IP must be verified stand-
alone, when integrated into an SoC, and when the SoC fabricated in 
silicon and operated in the end-product. So, IP verification is performed 
by the IP supplier and the SoC developer in cooperation with the end-
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product supplier. In some cases, the SoC developer and the end-product 
supplier are the same company (Apple, Cisco, etc.). In other cases, the 
SoC developer does not make the end-product and must work closely 
with the end-product supplier to complete SoC verification (Intel, AMD, 
Marvell, Broadcom, etc.). 

The available EDA tools used for IP verification today support a wide 
range of IP and SoC abstractions during IP development, including ESL 

modeling, software simulators, stimulus generators, verification IP 
(VIP), formal verification, emulation, and FPGA prototyping. [32] The 
EDA tools at each stage of IP development are under tremendous 
pressure today to enable SoC developer’s ability to: 

 run more cycles of operation, and  

 subject the SoC design to end-product like operating conditions.  

FPGA prototyping is emerging as a critical and cost-effective method to 
achieve both. S2C has specialized in FPGA prototyping solutions for 
almost two decades and has evolved its complete verification platforms 
to scale from semiconductor IP and small SoC verification, to billion 
gate SoC verification platforms. 

S2C offers a range of FGPA hardware platforms supporting Single-FPGA, 
Dual- and Quad-FPGAs with its Logic Systems – to more than a hundred 

FPGAs with its Logic Matrix. 

 

Figure 14: Side View of S2C’s Quad Prodigy Logic System (4 FPGAs) 
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S2C’s Prodigy Prototyping Solutions can be configured to model a stand-
alone IP block, an IP block together with associated VIP, a complete SoC 
containing the IP blocks that can be operated at hardware speeds. S2C’s 
rich library of Daughter Cards is “snap-together” attachments to the 
Logic Systems to quickly implement system interfaces so the user can 
model in-system operations. 

 

Figure 15:  Prodigy Daughter Card Interface IPs 

In addition, ProtoBridge, described earlier in this book, is also very 
handy in linking the FPGA prototyping platform to software platforms. 

These software platforms can be cycle-level RTL simulators or 
transaction-level virtual prototyping platforms. When in-depth RTL 
design verification is required, users connect the RTL simulator with the 
FPGA prototyping platform through ProtoBridge to accelerate cycle-
level simulation. When RTL design has been verified and is ready for 
software development, users can then combine the virtual prototyping 
platform and FPGA prototyping platform for software development. 
Moreover, together with the aid of daughter card interface IP, which 
allows the RTL design in the FPGA to connect with real-world devices, 
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the design team can complete the IP design and verification tasks from 
RTL level to system level on a single FPGA prototyping platform. 
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Hardware Verification 

Introduction 

Some say hardware verification is the process of verifying that a given 
hardware design correctly implements the specification. [33] Others say 
that hardware verification is verifying that a hardware design operates as 
intended (in the system). As SoC-based system products have become 
more silicon and software-intensive, and as competitive markets 
continue to drive down TTM in the face of growing complexity and cost, 
SoC developers are being forced to incorporate hardware 

verification/validation methods that consider the bigger picture – “Did I 
design the right product”? [34] 

In practice, hardware verification/validation means different things to 
different people. If you are developing an SoC for a system company, it 
means verifying that your own company’s systems operate as expected 
by your company’s customers. If you are developing an SoC for a chip 
company, it means verifying that systems produced by a variety of 
system companies using the SoC (your customers) operate as expected 
at their respective end-customers – and, it may not be known by the SoC 
developer, how all systems companies will connect and use the SoC, a 
very different verification proposition than what is faced by a system 
company developing SoCs that will only be used in its own systems. To 
reduce the risk of silicon failure, SoC developers commonly work closely 
with select system developer partners to know what it means for the SoC 
to operate as expected by the end-user. SoC developers at leading chip 
companies will go to extraordinary lengths to provide early prototype 
platforms to their select system developer partners to assure correct 
system operation during the early stages of the SoC development 
process – sometimes by providing hardware models implemented with 
FPGA prototypes. So it goes, the SoC developer focuses on designing the 
product right, then co-works with select system developer partners to 
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assure that they are designing the right product – and together they 
agree on what is expected from hardware verification. 

Because so much of electronic system functionality today is being 
implemented in silicon, and the total cost of silicon failure continues to 
escalate, SoC developers and EDA suppliers strive to optimize tools and 
methodologies to collapse the SoC development process to enable SoC 
developers to verify working silicon designs in the system – before 
silicon is available. This thinking was promoted by a decades-old vision 
for pre-silicon in-system verification that was popularized by early 
hardware emulation called in-circuit emulation, or “ICE”. 

 

Figure 16: Early In-Circuit Emulation [35] 

Lost In Translation 

Nevertheless, we are getting a little ahead of ourselves. Somewhere in 
the hallowed halls of great system companies lurk the uniquely prescient 
minds that conceive blockbuster electronic product ideas. Products that 
will sell hundreds of millions of copies (e.g., Apple) or produce billions 
of dollars of revenue with fewer copies (e.g., Tesla). [36] Steve Jobs was 
quoted as saying, “People don't know what they want until you show it 
to them. That's why I never rely on market research. Our task is to read 
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things that are not yet on the page.” [37] 

Whether derived from market research, or the Steve Jobs approach to 
new product development, new product ideas must cross a chasm from 
vision to reality – and there will be layers of specification translations 
between the two. Architecture Specifications, Marketing Requirements 
Documents (“MRDs), Product Requirements Documents (“PRDs”), C-
code models, HDL, etc. It should come as no surprise that some things 
will inevitably get lost in translation. This malady applies to clean-sheet 

new products, as well as evolutionary products developed as incremental 
derivatives of existing products. Phil Kaufman (CEO of Quickturn 
Systems in the 1980s) would say that a product’s User Manual should be 
written first – and all other requirements documents should be derived 
from the User Manual. This strategy has the goal of first establishing 
how the product should work from the user’s point of view, and then the 
product requirements would be elaborated in subsequent hardware, 

software, and system requirements documents to achieve the goal. 

Given all the specification translation complexity, TTM pressure, and 
escalating SoC cost, it’s no wonder that product developers, SoC 
developers, and EDA companies continue to push for better ways to 
close the product development loop from vision to reality earlier in the 
product development cycle. It is the high-pressure context of today’s 
hardware verification. 

Unknown Unknowns 

SoC developers are handed a “script” in this grand scheme of product 
development, usually in some form of a PRD. A PRD is also provided to 
system and software developers and silicon bring-up engineers – and a 
symphony of coordinated efforts is begun by the team of stakeholders to 
produce a working product. SoC developers are asked to produce 

working silicon and cooperate with the other stakeholders along the 
path to committing the SoC to silicon. So, today’s SoC developers make 
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every effort to comprehend the scope of how to test the SoC to confirm 
that they will produce the right product. 

At some point in the SoC development process, the design is translated 
from the PRD into an HDL interpretation of the functionality that will 
eventually be used to produce the silicon – then they set about to prove 
(verify) that their HDL describes the product right, and in parallel, they 
must also plan to assure that they are designing the right product. 
Starting with the known knowns, SoC developers must eventually 
consider the known unknowns, and unknown unknowns – terms 
popularized by Donald Rumsfeld (yes that Donald Rumsfeld!) in a US 
Defense Department news briefing in 2002; [38] 

 There are known knowns - these are things we know we know. 

 We also know there are known unknown - that is to say we know 
there are some things we do not yet know. 

 But there are also unknown unknowns - it is this latter category 
that tends to be the difficult ones. 

“Rumsfeld's statement brought fame and public attention to the 
concepts of known knowns, known unknowns, and unknown 
unknowns, but national security and intelligence professionals have long 
used an analysis technique referred to as the Johari Window. The idea of 
unknown unknowns was created in 1955 by two American psychologists, 

Joseph Luft (1916–2014) and Harrington Ingham (1916–1995), in their 
development of the Johari window.” [39] The Johari Window concepts 
may also be applied to hardware and SoC verification, and SoC 
developers knowingly or unknowingly apply these concepts to hardware 
and SoC verification. Known unknowns in SoC verification refers to 
“risks you are aware of.” Moreover, “unknown unknowns are risks that 
come from situations that are so unexpected that they would not be 
considered”. In the context of today’s hardware and SoC verification 
complexities, and considering the high portion of the total SoC 
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development effort that is devoted to verification, it is clear why 
designers are constantly seeking better ways to include more real-life 
end-system operation of SoC designs as early as possible in the 
development process. Formal verification and randomized testing are 
approaches to uncovering known unknowns and unknown unknowns. 
These approaches advance the SoC verification process but still leave 
areas of uncertainty in a domain of virtually infinite possible 
combinations. 

 
Figure 17: The Johari Window Model [40] 

FPGA Prototyping 

The need to accelerate design verification beyond software-based 
simulators inspired the three founders of Quickturn Design Systems 
(Quickturn) to develop a radical new hardware-based solution to 
address the chip verification needs of the late-1980s – and they named it 
“Emulation.” The three Quickturn founders, Michael D’Amour, Steve 
Sample, and Tom Payne, were EDA veterans from Daisy Systems and 
Silvar-Lisco – and it should come as no surprise that Tom Payne’s 

expertise was partitioning. The three founders were no strangers to the 
verification challenges facing chip designers of the day – and their 
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inspiration was driven by two key elements; 

 Build a box with multiple Field Programmable Gate Arrays 
(FPGAs) that behaved as a “sea of gates” that would model any 
chip design for operation at hardware speeds, and  

 Provide an “umbilical cord” from the modeled chip design to a 
“target system” – which they would call In-Circuit Emulation, or 
“ICE”. 

Quickturn’s emulators aimed squarely at the two chip verification needs 
of the day; 1) chip design verification running much faster than 
simulation, and 2) in-system operation of the modeled chip design as 
the ultimate test of chip design correctness – with real system interfaces 
connected to, and real software running on, the emulated chip design. 
Quickturn’s compelling ROI proposition was that ICE would allow chip 
and system designers to “collapse’, or “shift left”, their chip development 
schedules and harvest substantial economic benefits from faster TTM. 
[41] 

 

Figure 18: Concurrent Design Flow 

Today, emulation is widely used by chip designers to verify chip designs 

before tape-out to silicon, and emulators still run much faster than 
software-based simulators – but, not surprisingly, emulators are still not 
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fast enough for some to keep pace with increased chip design 
complexity, and too costly for others. Modern emulators are loaded with 
well-intended evolutionary infrastructure that automates chip design 
mapping into the emulator (including incremental design changes), 
provides high design visibility for near-simulator debug, connection to 
virtual models of portions, or all, of the target system, and supports 
billion-gate chip designs – and they come with eye-watering price tags. 

In the early days of emulation availability for chip verification, some 
chip designs still required FPGA prototyping – even though early 
emulation was virtually an FPGA prototype wrapped in a modest 
amount of EDA automation. For example, wireless chip design 
prototypes needed to be driven around in vehicles to test radio 
operation in the shadows of underpasses, hills, and large buildings – big 
emulation boxes were not portable enough. Similarly, electronic medical 
device prototypes needed to be carried around by real people to test 

artifacts caused by body movements. These chip designs were better 
suited to prototyping in a smaller footprint with a single FPGA. This 
realization leads to Quickturn positioning its emulation as a chip 
verification methodology that was “between” simulation and FPGA 
prototyping in the spectrum of available chip verification methods – 
Quickturn did not try to replace FPGA prototyping where prototyping 
was a better fit. 

So, it is no surprise that many of today’s chip designers are still looking 
to FPGA prototyping for yet faster chip design verification. In the very 
beginning, emulators were not much more sophisticated than today’s 
FPGA prototyping products – Quickturn’s first emulator would only 
support about 25K gates in each emulator box, did not have built-in 
timing analysis (imagine having to manually insert additional logic gates 
to add delay as a fix for timing problems!), and debug support was 
meager. To those who experienced early emulation and are still involved 
with SoC development – well, they are probably scratching their heads 
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and thinking, as Yogi Berra once famously wisecracked, “It’s like déjà vu 
all over again.” 

FPGA prototyping as a verification method is being applied today to a 
broad spectrum of chip design types from monster 5G baseband 
processor designs to smaller wireless designs that fit into a single FPGA 
– and a plethora of chip design types in between. Some chip designers 
are driven to FPGA prototyping because they have a “need for speed”, 
while others are driven by a need to enable access to early hardware 
models of chip designs by dozens of software development team 
members so they can run software on the chip design before tape-out to 
silicon (even smaller chips can have extraordinarily complex design 
verification needs). To address today’s diverse chip design types, 
suppliers must offer complete FPGA prototyping solutions that address 
the five pillars of FPGA prototyping; 

 Automate FPGA design mapping with flexible FPGA interconnect 

 Run orders of magnitude faster than simulation/emulation 

 Facilitate in-system-like operation 

 Provide for effective debug 

 Keep the cost affordable 

The Prodigy Player Pro is a tool that works with the FPGA-based 
prototyping platforms from S2C. It integrates three development 
processes into one – it configures the prototyping, runs remote system 
management, and provides set-ups for multi-FPGA debugging. Such an 
integrated solution alleviates the pain of tackling the complex FPGA 
flow and plays a significant role in the FPGA prototyping methodology. 
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Figure 19: S2C’s Prodigy Player Pro – Cockpit for prototype design and multi-debug set 
up 

Design Partitioning for FPGA Prototyping 

When an SoC design must be partitioned into multiple FPGAs to build 
an FPGA prototype, design partitioning adds complexity to the FPGA 
prototyping effort. Design partitioning adds to the first FPGA prototype 
bring-up effort, it adds to the time needed to update the prototype with 
design fixes, and it adds the complexity of maintaining good prototype 
visibility for debugging. While it is estimated that more than half of SoC 
designs will require multiple FPGAs to prototype, [42] the benefits of 
accelerated software development before silicon are so compelling that 
many experienced SoC developers are not deterred by the added 
complexity of design partitioning. 

Design partitioning has been one of the guiding implementation 
considerations for multi-FPGA prototyping since – well, since early 
emulators were implemented using FPGAs. Rent’s Rule describes an 
empirical relationship between pins per logic block and the number of 
gates in the logic block, and FPGAs have never had enough I/O pins to 
satisfy Rent’s Rule. As it has played out, Rent’s Rule has led to a host of 
unnatural design acts to get around the pin limitations of early FPGAs. 

To complicate the partitioning impact on prototyping, logic density will 
follow Moore’s Law, but packaging and pin counts will not – the growth 
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in the number of FPGA I/O continues to lag the growth in FPGA logic. 

However, maybe there is a glimmer of hope – system design modules 
naturally have smaller pinouts than arbitrary partitioning cuts, and 
Rent’s Rule does not apply to SoC design modules (“Well, yes it does but 
weakly.”). The implication of this is that, as the logic density and 
packaging technologies of the newer FPGAs continue to advance, FPGA 
logic and I/O pins will reach a point where any SoC design module will 
fit within a single FPGA – where automated user-guided partitioning 
may lead to simplified multi-FPGA prototyping, at least for the 
partitioning part of the prototyping effort. 

 

Figure 20: Automated User-guided Partitioning 

Besides, thanks to the rapid evolution of SERDES technology, time-
division-multiplexing (TDM) is frequently adopted to overcome the 
FPGA pin count shortage issue. With such methodology, multiple design 
signals are consolidated and transmitted through one FPGA pin and 
reassembled at the receiving side into their original format. In this way, 
we can save hundreds or even thousands of FPGA pins and finish the 
partition work more efficiently. 
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Expanding Prototyping Solutions 

Today’s FPGA prototype suppliers deliver on the promises of faster in-
system chip design operation, automated design mapping, plug ‘n play 
system interfaces, better debug – and more affordable verification 
solutions than emulation. 

S2C’s newest generation of FPGA prototyping products offers the latest 
FPGAs from Xilinx and Intel – and they are available in single, dual, and 
quad-FPGA variants. 

 

Figure 21: S2C Single-FPGA Prodigy Logic System 

In 2020, S2C announced a high-density FPGA prototyping platform, the 
Logic Matrix series, to better address high-complexity hyper-scale 
prototyping applications. A Logic Matrix packs 8 FPGAs in a single rack-

mounted chassis, and it is sized to allow eight Logic Matrix to fit into a 
single standard server rack – thus supporting 64  FPGAs or chip designs 
up to 3.1 billion ASIC gates. 

To simplify FPGA interconnect while addressing bandwidth and 
flexibility, S2C also introduced hierarchical connectivity: ShortBridge, 
SysLink, and TransLink, each with different granularity to manage local, 
Logic Matrix-to-Logic Matrix, and rack-to-rack interconnect. 
ShortBridge provides high throughput connectivity between 
neighboring FPGAs, SysLink connects FPGAs over high bandwidth 
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cables, and TransLink supports longer distance links between FPGAs 
with SerDes over copper or optical cables. Logic Matrix also offers 
server-class features such as real-time system monitors, professional 
cooling, and redundant hot-pluggable power supplies to ensure high 
reliability and robust operations. Logic Matrix’s high-density 
architecture also further reduces the cost of ownership by taking up less 
server rack space or the precious benchtop real estate. 

 

Figure 22: S2C Logic Matrix Series Platform 
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System Validation 

Introduction 

Moving from Hardware Verification to System Validation is an 
evolutionary transition, and it is more about when things are occurring 
vs. what things are occurring. There are some things you simply can’t do 
at the earliest stages of SoC development. You can’t run block-level RTL 
simulation before you have enough of the RTL completed for the block. 
You can’t do IP integration at the RTL level until you have the rest of the 
RTL completed to interact with the IP. You can’t’ run firmware on the 
RTL until you have enough of the RTL working correctly for efficient 
firmware testing. During the nascent stages of SoC development, when 
the implementation of the system constituent components is embryonic, 
the verification focus is on specifications. 

Specifications are the only recognized reference that developers can base 
decisions on to measure their progress towards tape-out sign-off on the 
SoC design. Designers must continually ask themselves the question: 
“Does my design conform to the specifications at every stage of 
development (building the product right)” – all the time trusting that the 
specifications faithfully represent what the user wants and expects 
(building the right product). Ideally, all system development would be 
done against a backdrop of a real system, running at real speeds, with 

real users “banging” on the system simultaneously while the system 
components were in the process of being developed. Sadly, that is not 
reality – not today. 

Verification vs. Validation 

Consider the IEEE Software Engineering standards definition for 
Verification (IEEE-STD-610). Verification, according to the standard, is: 

“A test of a system to prove that it meets all its specified requirements at 
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a particular stage of its development.” [43] 

Validation, according to the IEEE standard, is: 

“An activity that ensures that an end product stakeholder’s true needs 
and expectations are met.” 

“Validation focuses on ensuring that the stakeholder gets the product 
they wanted.” 

 

Figure 23: Verification and Validation 

There is an old line of reasoning that today’s silicon will always be an 
inadequate platform for designing tomorrow’s silicon. If you think about 
today’s SoC development environment, one of the major criticism of 
today’s design tools is that they take too long. “It takes too long to 

simulate my SoC.” Or “if I only had time to run more verification on my 
SoC before I tape out.” Imagine being able to plug a model of your SoC 
into a real end-product before you commit your SoC to silicon – running 
at full design speed – with internal visibility and operational control – 
and with the ability to relate any discovered design faults back to the 
SoC reference design description for interpretation and resolution. The 
spectrum of today’s design verification tools – software simulation, 
formal verification, emulation, FPGA prototyping – are all purposed to 
enable SoC designers to verify and validate their designs in less time with 
greater accuracy. Each successive tool enables longer periods of 
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operation of the design than the previous tool. If you need the fastest 
operation of your SoC design today while connected to a target system – 
you turn to FPGA prototyping. 

Shift to System Validation 

In today’s SoC development environment, with mounting TTM pressure, 
there must be a deliberate effort to pull System Validation forward - to 
move the focus from verification to validation and to shift the focus to 
producing the right product as early as possible. [44] Realizing early 
System Validation is the primary purpose of EDA tools like emulation 
and FPGA prototyping. With more real system-level inputs, system 
validation helps to find the bugs not found in the verification stage. 
Software simulation takes SoC developers only so far – then, for more 
accurate real-world system environment modeling and more real-world 
performance, the verification and validation process must invariably 

move into the hardware domain with emulation and FPGA prototyping. 

Considering that the end-product is also taking shape progressively from 
specification to implementation, System Validation can only be 
accomplished with reference to the end-product, or a portion of the 
end-product, is complete enough to begin validation. Knowing if the 
system design will work the way it was envisioned to work in the user’s 
hands at any stage of development is the intent – but, at early stages of 

system development, the ability to determine this depends on how 
complete the previous stage of design implementation is, and how 
accurately the user environment can be modeled. If SoC developers 
move too quickly to the next stage of validation, the next level validation 
effort will be bogged down by issues that are not relevant to the next 
development validation stage – e.g., firmware and software validated on 
a buggy SoC design. Software developers want to spend their time 
debugging their software, not the tools. They can only report that the 
firmware does not work as expected, try to characterize the fault, hope 
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that the root cause of the problem can be quickly identified by the SoC 
designers, and wait for an SoC design fix to be applied so they can 
continue their work. 

 

Figure 24: System Validation 

Software Content 

If there is any doubt about how significant the firmware and software 
development effort is for today’s SoCs, let’s be clear – Semico reported 
several years ago that “software design costs have eclipsed silicon design 
efforts and have become the largest portion of the SoC creation effort.” 

[45] This means that, to assure the fastest TTM, the SoC development 
effort must comprehend multiple parallel paths, with the development 
of all the system’s components staged to be progressively ready in time 

for validation with the other system components as early as possible – 
SoC design, IP integration, firmware design, software design, silicon 
bring-up, and system bring-up. 

Furthermore, the earliest possible time arrives for the implementation of 
any dependent component (silicon, firmware, or software) when it is 
“correct enough” to support the development of any successive and 
dependent component. The longer into the development process that a 
design fault persists (silicon, firmware, software) – the more costly it will 
be to remedy the fault. 
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FPGA Prototyping 

When an FPGA prototyping platform is planned for SoC, firmware, 
software, and system validation, the FPGA prototype development will 
begin early (before the RTL is ready for prototyping) so the prototype 
platform is ready when the SoC RTL design is mature enough to run on 
hardware in the FPGAs. Each SoC development project will have its own 
criteria for when the RTL is ready to run on the prototype. Some will 
start prototyping when the RTL is 75% verified in simulation. The other 

will start when the design fault discovery rate in simulation falls below a 
certain threshold. FPGA prototyping is purposed for long periods of 
continuous operations of the SoC design, and debug and reconfiguration 
for design fault fixes are slower than it is for simulation. Trying to 
prototype when there is a high frequency of faults can be inefficient 
because developers will spend more time analyzing faults and 
reconfiguring the FPGA prototype for fixes than they verify the SoC 

design. 

FPGA prototyping should be managed as a distinct SoC development 
effort, with FPGA prototype specialists working closely with the SoC 
RTL design specialists. When design faults are discovered with the FPGA 
prototype, the RTL specialists must lead the root-cause analysis and 
development of fixes to the RTL design as well as modifications to the 
FPGA prototype. Managing RTL revisioning and design fixes will be 
important disciplines for the two teams to minimize inefficiencies that 
might arise when a new design fault is identified on a previous version of 
the RTL that has already been modified with a previous design fix. 
Keeping the FPGA prototype aligned with the latest RTL version will 
streamline the verification and validation process – but it is not 
something the FPGA prototyping team wants to do because it requires a 
relatively high effort when compared to simulation. 

The FPGA prototype will have one or more FPGAs and come equipped 
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with debugging features that enable visibility into the SoC design being 
modeled. In addition, the prototype will have external connections to 
the modeled SoC target system to start system-level validation early. 
Moreover, the prototype may have connections to a host PC that models 
system-level data streams intended to mimic the SoC system 
stimulation. S2C is one FPGA prototype supplier that offers complete 
solutions for system-level modeling. 

 

Figure 25: Complete FPGA Prototyping Solutions 

S2C’s most popular prototyping product is its Prodigy Logic System 
which is available in Single, Dual,  and Quad configurations. Prodigy 
Logic System is an all-in-one design. In addition to an integrated power 

supply design that supports remote power cycling, Prodigy Logic System 
also supports other runtime operations such as multiple programmable 
global clocks, FPGA programming through Ethernet, USB, JTAG, and 
micro-SD. It also supports an optional on-board battery for binary file 
encryption. 

For debug, Prodigy Logic System may be paired with S2C’s Multi-Debug 
Module (also called MDM), which provides concurrent waveform 
viewing from multiple FPGAs in a single host PC window. MDM 
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supports waveform tracing for up to 32K probes per FPGA in 8 groups of 
4K probes and external hardware for storage of up to 8GB of waveform 
data. Waveform capture triggers can be specified as single events or 
combinatorial events, and trace data may be transferred to the host PC. 

 

Figure 26: Prodigy Multi-Debug Module 

For early system validation demanding stimulus data from a system-level 
software model, ProtoBridge can be a crucial tool. As previously 
highlighted, ProtoBridge can provide a high-throughput data channel 
between the host PC running RTL simulator or high-abstraction-level 
models and the FPGA prototype.  
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Software Development 

Early Software Verification 

Software is a critical component of product development effort, whether 
it is a system or an SoC design. As reported in previous sections of this 
book, software design costs have eclipsed silicon design efforts and have 
become the largest portion of the SoC creation effort. [46] And, like all 
competitive electronic products today, the pressure to complete system 
verification in less time with full system/SoC functionality running 
system software has never been greater. Since today’s SoCs typically 
have a 9-month to 18-month development cycle to design the silicon 
(not including the time it takes for silicon fabrication), software 
development cannot wait for the availability of silicon before starting 
the verification process. Running the software stack on full system/SoC 
functionality before silicon will surface system/SoC software 

interoperability issues early in the SoC development cycle. If a serious 
SoC/software interoperability issue is discovered after the SoC is 
committed to silicon, and the SoC silicon requires a silicon re-spin, the 
re-spin will add several months to the product development time. So, 
early software verification delivers two benefits; it “shifts-left” the whole 
software development schedule, and it may prevent a silicon re-spin by 
uncovering a critical functional or performance issue prior to SoC tape-
out. 

It is common practice today for system & SoC development projects to 
plan for some amount of hardware/software co-verification prior to 
silicon. That is, running the product software stack on the system & SoC 
hardware while the components of the system & SoC are still under 
development – especially the SoC silicon. Effective hardware/software 
co-verification requires running the system & SoC at some minimum 
operating speed (ranging from megahertz to tens of megahertz), within 
an accurate representation of the “target” system (if not the actual 
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system itself). Software simulation tools are the workhorse tools for 
system verification, including software verification. With software 
simulation, system models can easily be tuned to be more “life-like”, 
design fixes are quick and easy to implement, internal design visibility is 
easy to instrument, the design can be started and stopped at any time 
when design issues are encountered, and multiple copies of the 
simulation environment are easily distributed to large design teams in 
remote geographic locations at a modest price per user. Software 
simulation tools are leveraged to the extent of their capacity and 
performance. 

Hardware-Dependent Software 

Many of today’s systems & SoCs require a deep interdependency 
between the software and the hardware. Designers have learned to 
manipulate SoC design dynamic operation with low-level software to 

achieve lower power operation and higher performance when called for, 
and more effective techniques for data security – but these additional 
operating modes contribute to increased system & SoC verification 
complexity with more corner cases that require verification. 

For longer periods of software run time on the system & SoC hardware, 
and more accurate system modeling, developers may add hardware 
emulation to the verification tool mix. Besides running orders of 
magnitude faster than software simulation, hardware emulation 
supports in-circuit emulation, or ICE. ICE enables SoC designs modeled 
in the emulator to actually “plug” into functioning system hardware that 
can very accurately model the actual system hardware running the 
actual system software (sometimes the actual system itself). An iconic 
historic design tool milestone was achieved in the early 1990s when 
emulation of Intel’s Pentium processor was used to boot the operating 
system and run a spreadsheet application – well before Pentium silicon 

was available. [47] 
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While ICE is a compelling verification approach, it does present some 
physical challenges for implementation. Consequently, today’s 
emulation tools have evolved to include software virtual models of 
system hardware and semiconductor intellectual property (IP) that can 
be easily configured to represent system hardware components for 
hardware/software co-verification. These virtual models can generate 
large amounts of transaction-level data to stimulate the SoC design 
while the software is running on the emulated SoC design environment. 

Extending Verification Performance with FPGA Prototyping 

Similar to software simulation, hardware emulation has its performance 
limitations too. Emulation supports the operation of the system& SoC at 
frequencies in the low megahertz range. When emulation reaches its 
limits of performance and system modeling, and TTM schedules call for 
more comprehensive hardware/software verification early in the 

development process, SoC developers turn to FPGA prototyping. The use 
of FPGA prototyping for early hardware/software co-verification is 
growing rapidly, driven by SoC designs for the Internet of Things (IoT), 
Autonomous Driver Assistance Systems (ADAS), and healthcare – where 
tighter interdependencies exist between power and performance, and 
can only be verified with hardware/software co-verification. 

Once the SoC design is committed to silicon by taping out, FPGA 
prototyping enables software developers to continue with verification 
while silicon is being fabricated. It will be several months, and many 
millions of irrevocably committed dollars, before the silicon is available 
for moving to the next level of software verification with real silicon. 
Discovering SoC design issues before silicon, even during the silicon 
fabrication process, may save serious time and money. For example, if an 
SoC design issue is discovered that only impacts one or a few silicon 
mask layers, the cost for a revised mask set is reduced compared with 

the cost of full mask set, and the silicon fabrication process with the old 
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mask set is restarted before it runs to completion. Needless to say, the 
development team is highly motivated to reduce the number of times 
they need to pay for new mask sets and re-spin SoC silicon. It may not 
be intuitively obvious that, while the irrevocably committed silicon re-
spin dollars and extended engineering time are significant, the potential 
dollar value of market share losses when estimated over the projected 
product lifetime resulting from a delayed market entry can be much 
larger. 

Once it is up and running, hardware/software co-verification may be 
viewed as having three basic recurring phases; 

1. Run-Time – run the hardware/software until the next design issue 
is encountered (depending on the nature of the design issue, 
hardware/software verification may or may not be able to progress 
while the design issue is being fixed). 

2. Root Cause Analysis (RCA) – identify the hardware/software 
design artifact that is causing the design issue (some problematic 
design artifacts may appear to be random, and most actually occur 
well before the symptoms of the artifact are detected during 
system operation). 

3. Corrective Action (CA) – design a modification to the hardware 
design and/or the software design to fix the design issue, 
distribute the design modification to the system/SoC development 
team, and update the verification tools with the design revision. 

When a design issue is encountered, the RCA for the design issue can be 
tricky – it may not be immediately obvious from the symptoms whether 
the design issue is attributable to the software, the SoC design RTL, or if 
it is being caused by an artifact of the FPGA prototype’s system model. 

It is easy to envision that the total hardware/software verification time is 
the sum total of all of the hardware/software Runs Times, plus the sum 
total of all of the RCA and CA times. The Run Times are very fast with 
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FPGA prototyping, but the RCA/CA times are unpredictable and totally 
dependent on the developer’s ability to identify the design issue and 
quickly devise an effective design fix – it will be a hardware/software 
team effort. Another consideration for managing total 
hardware/software verification time is how long it takes to deploy the 
design fix to the FPGA prototyping platform – it would not be helpful if 
the FPGA prototyping revision deployment time is extended, and days 
will matter. 

Early in the development process, when frequent design faults are still 
being encountered, Run Times can be relatively short between design 
issue discoveries. So, project management will be well advised to plan 
for a smooth and well-documented design revisioning process when 
design revisions are needed. When a design issue is encountered, the 
development team must react and drive a fast RCA/CA, the design issue 
must be documented and communicated to the rest of the development 

team, and the design revision must be distributed and deployed by the 
development team in a dynamic system development environment.  

Interfacing Processor 

One important prerequisite to software development is realizing the 
processor. Depending on the adopted product development 
methodology and the design phase, each design team may have their 
own preference in how the processor is implemented and interfaced. 

When a brand new product is first defined, it is common to explore 
which processor should be used. To solidify the processor architecture, 
it is typical to conduct early software development over virtual 
platforms, such as QEMU and GEM5 as an instruction set simulator 
(ISS). The rest of the SoC and existing hardware IPs are placed in FPGA 
and connected to the ISS over high-bandwidth bus protocols. This 
approach helps to select the proper processor core, define the software 
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architecture, and start the software porting tasks in the early design 
stage. 

Once the processor core is chosen, design teams can replace the virtual 
processor platform with a real hardware processor platform. In addition 
to improving the data transfer efficiency between the processor and the 
FPGA, using a real processor can enable more accurate behaviors and 
performance measurements. As an alternative, design teams may also 
look to deploy hardware processor via Intel SoC FPGAs [48] or Xilinx Zynq 
SoC  [49], FPGAs with integrated hardcore processors, to further 
consolidate the prototyping environment for software development. 
These SoC FPGAs provide more flexibility and can easily interface with 
existing FPGA prototyping platforms. The programmability on both 
ends is useful for protocol translation and additional processing when 
required. Software code can execute at high speed with high cycle 
accuracy over such configuration. 

 

 

 

 

Figure 27: Connecting Xilinx Zynq platform with S2C Prodigy platform for fast software 
development 

For design teams that would like to fine-tune firmware cores, critical 
RTOS sessions, or the processor micro-architecture, a soft processor IP 
is needed. With the soft processor IP inside, the FPGA prototype can 
provide more visibility, control, and flexibility. On the flip side, 
integrating the processor IP into the FPGA prototype typically requires 
multiple FPGAs. As a result, tools designed for multiple-FPGA 

debugging, such as S2C's MDM [50] and Synopsys' DTD [51], are pretty 

FMC 
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valuable. These tools offer an effective and efficient debug approach for 
validating SoC designs to provide good visibility to the SoC behavior 
without sacrificing execution performance. 

 

Figure 28: FPGA-based prototypes offer an extreme performance advantage over 
various software simulation techniques  [52] 
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Compatibility Testing 

Introduction 

According to a Wikipedia “stub” article definition of Compatibility 
Testing [53] that references the ISO 25010 standard for System and 
Software Quality Models, and with some generalization by this author to 
apply the definition to SoC-based systems and software, Compatibility 
may be defined as: The degree to which a system or product can 
exchange information with other systems, while sharing a common 
environment and resources, without detrimental impact on any other 
system or product. The article goes on to add a subtle distinction 
between Compatibility and Interoperability by re-labeling the degree of 
Compatibility as “co-existence”, and defining the degree of 
Interoperability as: “The degree to which two or more systems, products 
or components can exchange information and use the information that 

has been exchanged.” Having established a context for a definition of 
Compatibility Testing, the article defines Compatibility Testing as: 
“Information gathering about a product or software system to determine 
the extent of co-existence and interoperability exhibited in the system 
under test.” 

Another definition for Interoperability highlights an important 
consideration not captured in our definitions above: “Interoperability 
refers to the basic ability of computerized systems to connect and 
communicate with one another readily, even if they were developed by 
widely different manufacturers in different industries. Being able to 
exchange information between applications, databases, and other 
computer systems is crucial for the modern economy.” [54] The 
Interoperability consideration that development of systems and products 
will be performed by different engineers, working for different 
companies, in different markets, shines a bright light on the broader 
challenge of SoC-base product Compatibility Testing – developers must 
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consider that their products will be expected to exchange information 
with a myriad of other products with a completely different 
development provenance. 

Consequently, as today’s SoC-based systems and products have exploded 
in complexity, the scope of Compatibility Testing of these SoC-based 
systems and products has increased dramatically. Developers need to 
consider a wide variety of environments and resources that their systems 
and products must operate in – and that the critical functionality 
(including electrical specifications and performance) must be confirmed 
prior to committing to silicon because of the high risk that some minor 
incompatibility will impair the quality of the silicon in a way that 
requires a silicon re-spin. 

Industry Standards 

The availability of standards in the semiconductor electronics industry 

has gone a long way to reducing the required scope of Compatibility 
Testing – but the standards themselves are becoming very complex, are 
constantly changing with new standards generations, and are subject to 
subtle misinterpretations by different product developers. Today’s 
standards-based commercial semiconductor IP has matured to the point 
where IP adherence to the standards has been thoroughly tested by the 
IP supplier, and possibly by some of their customers, before being 
delivered to SoC developers. In some cases, the specifications for the 
next generation of a standard may still not have been frozen when the 
development of a new SoC-based product must be started – be reminded 
that SoC-based product development takes several years to complete, so 
some aggressive SoC-based product developers may feel compelled in 
competitive markets to start a new project incorporating a new standard 
when the standard is still changing but is expected to be frozen prior to 
SoC commitment to silicon. 
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The primary driver of the commercial semiconductor IP market has 
been the management of SoC design complexity for reducing SoC 
development cost and TTM, enabling an SoC design team to focus their 
development effort on product differentiation in their area of subject 
matter expertise, and that industry standardization of the IP assures a 
high level of interoperability with all commercial products that claim to 
operate according to the standards. Being able to implement complex 
SoC-based systems and products with large blocks of pre-verified, 
standards-based functionality dramatically reduces the Compatibility 
Testing burden for new products – under the assumption that these IP 
blocks are designed and tested to functional and electric standards that 
are widely available and strictly observed by the entire professional 
product development community. 

Software Enables Comprehensive Compatibility Testing 

SoC-based product developers today take advantage of early FPGA 
prototyping to extend SoC Compatibility Testing to include some, if not 
all, of the product’s software running on the SoC-based hardware before 
silicon – a testimony to the claim that the primary application of FPGA 
prototyping today is for early hardware/software co-verification. 
Execution of a product’s software stack – from the device drivers at the 
bottom of the software stack, to the operating system, and to application 
software – provides another level of improvement in verification 

environment accuracy to better support early Compatibility Testing with 
a more comprehensive coverage. For some applications, SoC 
development is supported by FPGA prototyping tools that enable 
developers to run the product’s full software stack on a prototype of the 
SoC-based hardware prior to silicon tape-out – perhaps not at the full 
SoC silicon speed, but at sufficient speeds to exercise the full software 
stack on the SoC-based hardware. For example, at the low end of SoC 

complexity, new Bluetooth IP developers are using today’s FPGA 
prototyping technology to operate their designs at speed up to 24 MHz – 
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fast enough to run the full software stack prior to tape-out, and fast 
enough to allow an FPGA prototype of one Bluetooth radio to “talk to” 
an FPGA prototype of another Bluetooth radio as part of their 
Compatibility Testing. 

 

Figure 29: Siemens - ECU and its Software Stack  [55] 

Modern FPGA prototyping systems offer software developers a cost-
effective, near-real-world verification environment, a desktop platform 
that enables them to start SoC-based hardware/software co-
development much earlier than a simulation-based or emulation-based 
verification platform, providing that the software executing performance 
is feasible – and it is all about the speed of the platform. Indeed, 
simulation is just too slow for comprehensive software testing, and if the 
software testing cannot begin until after silicon, TTM will be extended. 
Subsequently, it is not uncommon that further delays may be caused by 
a silicon re-spin resulting from some crippling SoC/software 
incompatibility.  

“How about emulation?” you may ask. While emulation is hardware-
assisted and it performs an order of magnitude faster than simulation, it 
is still an order of magnitude slower than FPGA prototyping. It is also 
too expensive for each software developer to have their own desktop 
emulator. We can easily model, by making a few assumptions on the 
setup time of emulation vs. FPGA prototyping, system performance, and 
the number of test runs, to find out the time-saved crossover point at 
which FPGA prototyping is more advantageous. [Prototyping/Emulation 
Performance Calculator https://w2.s2ceda.com/resource-
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library/prototyping-calculator] 

Compatible Testing in the Cloud 

The need for adequate system validation and compatible testing is 
convoluted by the vast combinations of hardware configurations and 
peripheral connections, thus making it necessary for project teams to 
conduct testing in parallel to meet project schedules. This calls for a 
validation platform that is both capable of supporting concurrent testing 
operations and scalable to provide sufficient resources. Yet another 
challenge to overcome is the precise constructions and reconstructions 
of testing environments to ensure the validity of the compatibility 
testing itself. Both criteria calls for a hardware-assisted validation 
platform – in the cloud. Not only would a cloud-based solution provides 
the scalability, the resource and the environment to address the 
challenges mentioned, it can lower cost through higher utilization rate 

and simplify deployment and maintenance.  

 

Figure 30: S2C Scalable Prodigy FPGA Prototyping Platforms 

S2C’s Prodigy Prototyping technology provides industry-leading remote 
management capabilities, ranging from remote FPGA download, virtual 

IOs, switches, UARTs, LEDs, and remote power cycles, to enterprise-
class server/client management software, to provide effective resource 
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sharing and management. Such remote access, especially with 
prototyping hardware deployed in masses, provides software engineers 
with the means to run massive parallel regression tests and conduct 
analysis on multiple platforms simultaneously. To bring remote access 
and utilization management to the next level, S2C assisted customers in 
building a system validation and compatibility testing platform with 
more than one hundred FPGAs. Combing S2C’s Neuro cloud 
management software and VMware virtual machines to manage the 
high-density Logic Matrix hardware, a resilient and flexible FPGA 
prototyping cloud service was constructed within six weeks. Fewer 
servers, lower total cost of ownership, but large design capacity and 
benefiting a large number of users. After completion, hundreds of users 
in the enterprise, no matter where they are, can remotely use the 
hardware platform, never interfere with each other, and efficiently 
perform compatibility testing, system validation, and software 
development concurrently. 

 

Figure 31: Various design and verification technologies for different design stages and 
SoC integration levels 
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