
Whitepaper

Contents

www.s2ceda.com

Ⅰ

Author:
Steve Walters

Advanced SoC Debug with
Multi-FPGA Prototyping

Release date:
April 2022

FPGA Prototype Essential Debug Tool
Characteristics

A Word About Multi-FPGA Prototyping

Prodigy Multi-Debug Module Pro (MDM
ProTM)

Summary and Conclusions

Ⅱ

Ⅲ

Ⅳ

www.s2ceda.com 2

Advanced SoC Debug with Mult i -FPGA Prototyping

As SoC designs advance in complexity and performance, and software becomes more sophisticated and

SoC-dependent, SoC designers face a relentless push to “shift left” the co-development of the SoC silicon

and software to improve time-to-market. Consequently, SoC verification has evolved to include multi-FPGA

prototyping, and higher prototype performance, to support longer runs of the SoC design prototype, running

more of its software, prior to silicon – in an effort to avoid the skyrocketing costs associated with silicon

respins. While FPGA prototyping for SoC design verification by its nature remains a “blunt instrument”, FPGA

prototyping is still the only available pre-silicon verification option, beyond hardware emulation, for achieving

longer periods of SoC design operation capable of running software, and, in some cases, “plugging” the SoC

design prototype directly into real target-system hardware. Not surprisingly, commercial FPGA prototype

suppliers are using the latest FPGA technology to implement FPGA prototyping, offering multi-FPGA proto-

typing platforms, and advancing FPGA prototyping debug tool capabilities, to meet customer demands for

more effective SoC verification.

Ideally, SoC design debug tools for FPGA prototyping would enable software simulation-like verification and

debug at silicon speeds – providing visibility of all internal SoC design nodes, not impede prototype perfor-

mance, provide unlimited debug trace-data storage, and be quickly reconfigurable for revisions to the SoC

design and/or the debug setup. In reality, today’s SoC design debug tools for FPGA prototyping falls short of

the ideal, and multi-FPGA prototyping adds to the challenge of achieving ideal SoC design debug tool

capabilities. As a result, today’s FPGA prototyping for SoC design debug offers tradeoffs among the ideal

debug tool capabilities, and it is left to the SoC design verification team to configure an “optimal” verification

strategy for each SoC design project – with consideration for future scaling-up and improved verification

capabilities.

This white paper reviews some of the multi-FPGA prototyping challenges for SoC design verification and

debug, and, reviews one example of a commercially available multi-FPGA prototyping debug capability

offered by S2C Inc., a leading supplier of FPGA prototyping solutions for SoC design verification and debug

(s2ceda.com).

Figure 1. S2C Multi-FPGA Prototyping Platforms and MDM Pro Debug Hardware

The expected value of an FPGA prototype for verification/debug is derived from enabling SoC design opera-

tion in a modeled end-product context (or an actual end-product) for long periods of time, while executing the

FPGA Prototype Essential Debug Tool Characteristics

www.s2ceda.com 3

end-product’s software – with the objective of verifying “intended SoC design operation” prior to committing to

silicon. The expected value of an FPGA prototype is achieved when an SoC designer can identify all causes

of an SoC design’s failure to operate as intended prior to silicon – hence, advanced FPGA prototyping debug

tool capabilities are critical to achieving the expected value from the FPGA prototype.

When considering an FPGA prototype debug solution, the essential debug tool characteristics include;

The implementation itself of each of these essential debug tool characteristics can create impediments to

achieving the Ideal SoC design debug tools for FPGA prototyping previously described. For example, debug

probes consume FPGA routing resources and will impact the logic utilization of the FPGAs and may impact

prototype performance. Another example is when debug trace-data storage is implemented with FPGA

storage resources, where the debug trace-data storage is limited by the on-FPGA storage resources, and the

needed debug trace-data storage may compete with the storage required by the SoC design prototype itself.

Further, if debug probes consume a large number of FPGA I/O, the useful FPGA logic utilization will be

reduced, and the prototype performance may be impaired – and if the debug probes need to be recompiled

for FPGA download every time the debug probes are reassigned, the FPGA reconfiguration times will be

extended, stretching out the total debug time consumed by many reconfigurations.

Debug Probes – debug probes are “physical” connections that must be connected to design prototype “physi-

cal” nodes inside the FPGA, and therefor will compete with the SoC design itself for FPGA routing resources,

both for internal FPGA interconnect, and for external FPGA interconnect in a multi-FPGA prototype. When

implementing any multi-FPGA prototype of an SoC design, an empirical relationship has been described

between the size of a design logic block (often referred to as “cut size” when partitioning a design for

multi-FPGA implementation), and the number of I/O needed to access the logic contained in the “cut”. One

such empirical relationship is referred to as “Rent’s Rule” (Figure 3.). Said differently, consuming FPGA I/O for

debug probe connection will limit the amount of useful FPGA logic available for prototype implementation,

and, to exacerbate the multi-FPGA partitioning challenge, the raw logic capacity of new generations of

prototyping FPGAs is increasing faster than the number of FPGA I/O is increasing. When thousands of debug

probes are desired, and considering that today’s leading prototyping FPGAs are configured with less than

2,000 single-ended I/O (Xilinx’s VU19P FPGA has 1,976 single-ended I/O), the impact on prototype imple-

mentation can be significant if FPGA I/O are allocated to accessing a large number of debug probes.

Advanced SoC Debug with Mult i -FPGA Prototyping

Figure 2. Essential Debug Tool Characteristics

www.s2ceda.com 4

The number of debug probes will also determine the “structure” of the trace-data storage (width and depth).

For a fixed amount of trace-data storage, the trace-data width (the number of probes) will determine the

number of trace-data “samples” that can be captured (trace-data storage depth) – kind of a “zero-sum game”.

If you are limited to 1,000 bits of trace-data storage, and the trace-data width is 100 bits (100 probes), the

maximum number of trace-data stored samples will be 10. Alternately, if the trace-data width is 10 bits, the

maximum number of trace-data stored samples will be 100. As the number of trace-data probes increases to

large numbers, probe data multiplexing may be necessary to extract the trace-data from the FPGA through a

very small number of I/O pins – leading to another important tradeoff between trace-data width, depth, and

debug tool performance.

Available Debug Trace-Data Storage – depending on the implementation of the debug tools, trace-data

storage may use FPGA internal storage resources. If “external” trace-data storage is used for implementation,

no FPGA storage resources are consumed, and the trace-data storage depth can be scaled to meet the

debug strategy requirements by adding more external storage memory. Alternatively, very “wide” trace-data (a

large number of debug probes) will need to be multiplexed “down” to a few FPGA I/O. which will necessarily

reduce debug tool performance. The FPGA prototype user should look for tradeoff flexibility to optimize the

trace-data storage depth, width, and performance.

Debug Solution Performance – its challenging enough to get a complex SoC design running correctly on an

FPGA prototype at the targeted performance – without being performance-limited by the implementation of

the FPGA debug tools. Unfortunately, without effective debug tools, the FPGA prototype “value” is diminished

in a verification environment. Similarly, if a large number of debug probes causes significant FPGA routing

congestion (internal or external), the prototype performance will be degraded. Further, if implementing a large

number of debug probes requires many levels of multiplexing to access the probe trace-data, the prototype

performance will be reduced proportionally. The FPGA prototype may be capable of running at 50MHz with

fewer debug probes, but the prototype performance may only be 25MHz with many more debug probes.

FPGA debug tools that offer programmable options for configuring debug probe width, trace-data storage

Advanced SoC Debug with Mult i -FPGA Prototyping

Figure 3. Rent’s Rule

www.s2ceda.com 5

depth, and prototype performance will provide users with the flexibility to optimize the prototype debug tools

for a given FPGA prototyping project.

Reconfiguration Time – SoC design debug is inherently iterative during the SoC verification process on the

path to silicon tapeout, including the FPGA prototyping phase of SoC verification. Fix a design bug, then run

until the next design bug stops further design verification progress. Then, debug some more by capturing key

design signals (probes) during design operation up to the time when “symptoms” occur that indicate that a bug

has occurred, and iterate prototype runs until the bug “root-cause” is identified. Clearly, this is an oversimplifi-

cation of the process, but it should also be clear that the debug process is unavoidably iterative. The actual

bug root-cause may have occurred many tens of thousands of clock cycles prior to the appearance of the bug

symptoms, and the bug root-cause trace-data may be inaccessible by not having anticipated the placement of

debug probes on critical design signals. As bugs are discovered, they will be fixed by the designers and a new

version of the design RTL incorporating the fix will be released into the SoC verification environment. During

this debug process, it may take several iterations of the FPGA debug tool configuration to isolate the bug

root-cause so that the bug can be diagnosed and fixed. Throughout the SoC design verification process, there

may be hundreds of reconfigurations of the design and/or the FPGA debug tools – in extreme cases, the

design and/or the FPGA debug probes will need to be reconfigured multiple times a day. To the extent that the

implementation of the FPGA debug tools can contribute to reducing the number of needed reconfigurations

(therefor the reconfiguration time) – the total debug time will be reduced.

Advanced SoC Debug with Mult i -FPGA Prototyping

Figure 4. Soc Design Debug Is Inherently Iterative

Prototyping an SoC design with multiple FPGAs is not a novel concept. Early hardware “emulation” systems

for SoC design verification and validation faced the same hardware implementation challenges as the FPGA

prototyping systems of today. Over the past 2 decades, emulation has focused on scale and reducing user

involvement in the prototype design implementation (higher automation) at the expense of lower prototype

performance and higher cost, while FPGA prototyping has focused on the highest prototype performance and

lower cost at the expense of higher user involvement in the prototype design implementation (more user

involvement). Consequently, today’s emulators achieve SoC design prototype performances of a few

mega-Hertz, while FPGA prototyping can achieve SoC design prototype performances that are 10 times or

A Word About Multi-FPGA Prototyping

www.s2ceda.com 6

 more higher than the performance of emulators – consequently, today’s SoC designers have evolved their

verification methodologies to include a combination of software simulation, hardware emulation, and FPGA

prototyping, to “shift-left” the SoC-based product time-to-market.

The point of this comparison between emulation and prototyping is that debugging a complex SoC design in

an multi-FPGA prototype (or an emulator) implies extensive probing of internal design nodes during design

prototype operation, and, as mentioned earlier in this white paper, the implementation of debug probes

competes with the same FPGA resources used to implement the SoC design prototype itself, and impacts

the number of FPGAs required, the prototype performance, and the prototype cost – for both emulation and

FPGA prototyping. More probes consume more routing resources. Also, large amounts of trace-data storage

requires significant storage resources – and, more of both impacts the performance and reconfiguration

times of the prototype. This, in turn, impacts the effectiveness of the FPGA prototype debug tools for acceler-

ating time-to-market. These considerations have driven FPGA prototype suppliers to optimize the implemen-

tation of debug probes, and trace-data storage – by multiplexing debug probes for access with a few

high-speed FPGA I/Os, and external memory hardware.

Maximizing the number of “available” debug probes while considering the impact on prototype performance

and reconfiguration time, and maximizing trace-data storage while considering the impact on prototype

performance and consumption of internal FPGA storage resources, are two examples of FPGA prototyping

debug tool optimizations.

Advanced SoC Debug with Mult i -FPGA Prototyping

To optimize the implementation of its SoC design debug tools for FPGA prototyping, S2C has chosen a

combination of external hardware, soft IP implemented in the FPGA, high-speed FPGA I/O, and debug

configuration software for its MDM Pro. MDM Pro was designed specifically to support multi-FPGA prototype

implementations – with support for high probe-counts, deep-trace debug data storage, optimization of debug

reconfiguration compiles, and with the ability to choose debug configuration tradeoffs to optimize prototype

performance. The MDM Pro debug capabilities are delivered through a combination of the MDM Pro hard-

ware, S2C’s ProdigyTM FPGA prototyping platforms, and S2C’s Player ProTM software. The Player Pro

software supports user-friendly debug configuration, complex trace-data capture triggering, and single-win-

dow viewing on the user console of simultaneous streams of trace-data from multiple FPGAs. The MDM Pro

hardware supports high-performance deep-trace debug data storage without consuming internal FPGA

storage resources. S2C’s Prodigy FPGA prototyping platforms support SoC design implementation with

user-selected debug probes inserted, and high-speed transmission of the deep-trace debug data to the MDM

Pro hardware through FPGA GTY transceivers over mini-SAS connectors between the MDM Pro hardware

and the Prodigy FPGA prototyping platforms.

Prodigy Multi-Debug Module Pro (MDM ProTM)

www.s2ceda.com 7

Figure 5. MDM Pro Overview

MDM Pro Prototype Debug Hardware: the MDM Pro debug hardware is organized to optimize the imple-

mentation of debug probe connections, the trigger hardware for trace-data capture, the trace-data storage

memory, and the transmission of the trace-data to the user console for waveform viewing – providing debug

configuration flexibility, optimizable prototype performance, and minimized reconfiguration time.

Figure 6. MDM Pro Debug Hardware Components

MDM Pro debug hardware supports FPGA prototype debug with the configurable features listed in Figure 7.

Figure 7. MDM Pro Prototype Debug Features

Advanced SoC Debug with Mult i -FPGA Prototyping

www.s2ceda.com 8

Advanced SoC Debug with Mult i -FPGA Prototyping

To minimize the use of FPGA I/O, and minimize the impact on FPGA logic utilization, debug probes are multi-

plexed for transmission from the Prodigy FPGA prototyping platform to the MDM Pro hardware with FPGA

high-speed GTY transceivers over mini-SAS cables – as illustrated in Figure 8. MDM Pro IP is provided to

implement the probe multiplexing and will be downloaded into the FPGA prototype with the SoC design and

the debug probe connections. The “level” of debug probe multiplexing is configured to support the user-speci-

fied number debug probes for collecting debug trace-data – and, due to the multiplexing hardware delays, the

level of probe multiplexing will impact prototype performance (see Figure 13).

Figure 8. MDM Pro Debug IP for Probe Multiplexing

MDM Pro Workflow: An overview of the MDM Pro workflow flow is provided in Figure 9.

Figure 9. MDM Pro Workflow Overview

The user identifies a “generous” number of wires or registers, at the imported design-level, that “might” need

to be viewed during debug – potentially more probes than the user expects to view during any single debug

run of the FPGA prototype. All of these probes will later be programmed into the FPGA for debug. The

advantage of configuring more probes than might be required for any single debug run is that capturing

trace-data from any of the “pre-configured probes” will not require a re-compile of the FPGA to switch from

one “set of active probes” to another set of probes – potentially reducing the number of FPGA re-compiles

during a debug session and reducing the overall debug time.

MDM Trace-Data Capture Trigger: advanced debug triggering can reduce the time to converge on the

www.s2ceda.com 9

root-cause of a bug, fix the problem, and move on to the next debug sequence. The features of MDM Pro’s

complex trace-data capture triggering are summarized in Figures 10 and 11.

Advanced SoC Debug with Mult i -FPGA Prototyping

Figure 10. MDM Pro Trace-Data Capture Triggering

Figure 11. MDM Pro Capture Trigger State Machine

MDM Trace-Data Storage Memory: MDM Pro trace-data storage is implemented with 64GBytes DDR4

memory in the MDM Pro hardware. When probes are inserted into the FPGA implementation of the SoC

design, and the prototype design is allowed to “run”, trace-data is “flowing” from the FPGA prototype to the

MDM Pro debug hardware. Trace-data from the FPGA debug probes is continuously stored in a trace-data

memory that is organized as a “circular buffer” where new data is allowed to continuously overwrite old data

as the trace-data buffer fills – until the user-programmed trace-data trigger conditions are met (Figure 12.).

When the trigger conditions are met, the trace-data memory begins storing trace-data until the trace-data

buffer fills again, or until the programmed number of trace-data samples are captured, and then the trace-da-

ta memory stops storing new trace-data – and the captured/stored trace-data is uploaded to the user console

for viewing. As mentioned earlier, trace-data may be simultaneously captured/stored from 1 FPGA, or several

FPGAs, and viewed in a single viewing window with the Player Pro software.

www.s2ceda.com 10

Advanced SoC Debug with Mult i -FPGA Prototyping

Figure 12. MDM Pro Trace-Data Storage Circular Buffer

For optimum flexibility, and optimum performance, the MDM Pro trace-data storage “structure” is automatically

configured for different debug requirements – first, to support the number of user-specified probes (trace-data

storage width), and then the trace-data storage depth (number of samples) is in turn determined by the total

available hardware storage memory (64GBytes). The maximum MDM Pro performance is determined for each

configured structure. Figure 13. summarizes the supported combinations of trace-data storage width and

depth – and maximum MDM Pro performance.

Figure 13. MDM Pro Trace-Data Width and Depth

S2C’s MDM Pro hardware, together with S2C’s Prodigy FPGA prototyping platforms, and S2C’s Player Pro

software, implements a rich set of debug features that provides SoC designers with the flexibility to optimize

the FPGA prototype debug tools for a given FPGA prototyping project. MDM Pro combines off-FPGA hard-

ware for “deep” trace-data storage and complex hardware trigger logic, in combination with probe multiplexing

Summary and Conclusions

S2C / www.s2ceda.com

© 2022 S2C. All Rights Reserved. S2C, Prototype Ready, ProtoBridge, Logic Matrix and Prodigy, are trademarks of S2C.

All other tradenames and trademarks are the property of their respective owners.

CB202204

IP in the FPGA to access a large number of debug probes over a few FPGA high-speed GTY connections to

minimize the consumption of FPGA I/O, and the ability to setup more probe connections than need to be

viewed at the same time so that more probes may be viewed when needed without recompiling the FPGA or

degrading the debug performance. Player Pro software for debug compliments the debug hardware with a

powerful user interface for managing the debug setup, configuring advanced trace-data trigger conditions,

initiating debug runs of the FPGA prototype, and viewing the debug trace-data from multiple FPGAs in a

single viewing window.

Advanced SoC Debug with Mult i -FPGA Prototyping

