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Employing Multi-FPGA Debug Techniques 
 
Traditional FPGA Debugging Methods 
Debugging in FPGAs has been difficult since day one. Unlike simulation where 
designers can see any signal at any time, signals when mapped to a FPGA may be 
difficult to locate or even worse optimized away. Even after you identify where the 
signal is, it may be difficult to capture the time period in which you would like to 
observe that signal as the FPGA runs at real speed and you cannot continuously 
capture and store the waveform of that signal. Therefore, some sort of triggering and 
waveform storage circuit is needed to perform debugging in an FPGA. Let us take a 
look at the two popular approaches today: external logic analyzer and internal logic 
analyzer.  

 
External Logic Analyzers 
 
Let’s first take a look at the use of external logic analyzers that have been in use for 
years. Popular external logic analyzers today are from Agilent and Tektronix and can 
sample at GHz frequency and store GBs of waveforms. External logic analyzers have 
the ability to store large amounts of trace data but for the data to be useable, the data 
needs to be taken off the chip, which can be a difficult task.  The signals, or probes, 
that a designer wants to observe need to be sent to FPGA I/O pins to connect to a 
logic analyzer. Since some probes may be buried deep inside design hierarchy, it 
may be time-consuming to get the right probes to the top of the design.   
 
Physically, you also need some kind of adapter card that connects the FPGA I/O pins 
to the logic analyzer header. For example, Agilent logic analyzers use a 38-pin Mictor 
connector.  Most off-the-shelf FPGA boards do provide optional daughter cards that 
can connect the FPGA I/O pins to the 38-pin Mictor connector. If you are building 
your own (RYO) board, then you should reserve a set of pins to connect to the Mictor 
connectors if you choose to have the ability to observe through a Logic Analyzer.     
 
The biggest drawback for the use of external logic analyzers is actually the limited 
number of probes you can observe at a time since there are only a limited number of 
FPGA I/O pins you can use for debug. In most designs, the majority of FPGA I/O pins 
are used for external target interfaces or used as interconnects to other FPGAs if 
more than one FPGA is used. Therefore, reserving a large amount of pins for 
debugging through an external logic analyzer may not be feasible. Multiplexing the 
probes to I/O pins can solve the limited pin issue but is almost never used since 
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external logic analyzers need to capture data at real speed and also need to support 
de-multiplexing on the logic analyzer side. 
Once connected, the external logic analyzer is used to set up triggering and data 
capture conditions. Triggering is typically done using a state-machine technique 
whereby values are specified for a signal and then either the data is captured or a 
different condition is sought after on another state. The signals remain static while the 
conditions can be altered at any time. Trace memory using an external logic analyzer 
is rather large therefore memory can afford to be wasted trying to find trigger 
conditions that are close to desired observation points. The advantage of an external 
logic analyzer is that it can sample at high frequency (in the GHz range), at high 
accuracy, and support very complex triggering conditions. Today, some designers 
still prefer to use an external logic analyzer because of these advantages as well as 
the feeling that debugging needs to be seen on real equipment, not just through a 
software tool.   
 
Internal Logic Analyzers 
Internal logic analyzers such as Xilinx’s Vivado or Altera’s SignalTap utilize cores that 
are embedded into the design whereby the trigger conditions are set using a GUI in 
software on a PC through a JTAG interface. The captured data is transferred to the 
PC where it can be viewed and analyzed. The internal logic analyzers provided by 
the FPGA vendors are tightly integrated with their FPGA place and route tool making 
them easy to learn and use.  
However, trace data needs to be stored in the FPGA internal block memory before a 
triggering condition is met and therefore they can only achieve very limited width and 
depth. Often, you have to choose between limiting the amount of memory you can 
have for your design versus allocating some memory for debugging. When a 
triggering condition is met, the logic analyzer stops storing new waveforms in the 
memory and shifts out current memory content through JTAG.  The process can be 
slow if trace data is large. The probes must be statically defined and trigger 
conditions can be dynamically changed during debug just like with external logic 
analyzers. Most internal logic analyzers only support probing at the gate level so 
signal names may have changed or may have even been optimized away. Probes 
are static, meaning that to change probes you usually need to re-compile the design.     
Some third party internal logic analyzers do support RTL probing which can improve 
the user experience. They also provide more advanced triggering and analytic 
features that allow you to get meaningful data from limited amount of waveform 
storage memories inside an FPGA.   
Even though internal logic analyzers supplied by the FPGA vendors have quite a few 
limitations, they are still by far the most popular tools used for FPGA debugging today. 
This is due to their relative low-cost and tight integration with the FPGA vendors’ own 
place-and-route tools.  
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Multi-FPGA Debugging Methods 
 
External and FPGA Internal Logic Analyzers are better suited for debugging a single 
FPGA.  Although external logic analyzers can probe signals simultaneously from a 
multi-FPGA environment, the limited number of probes available makes debug 
inefficient. Debugging only one FPGA at a time in a multi-FPGA environment makes 
effective debug of the design significantly more difficult, time-consuming, and 
error-prone. These logic analyzers can only provide a subset of the picture in which 
to debug and don’t have the trace depth for delving into the behavior of a multi-FPGA 
design. Debugging only a piece of the design at a time can lead to errors in other 
parts of the design as the bugs are fixed. The difficulties involved with this type of 
approach are illustrated in the diagram below.  

 
What’s needed is a holistic approach to debug for multi-FPGA platforms to ensure 
design behavior is not affected as bugs are corrected because RTL-level signals and 
module names are maintained throughout. With the use of a configurable external 
module, multi-FPGA debug will also allow for the detection of very hard to find corner 
case bugs because of the deep trace depth that can be achieved.  
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Benefits of using a multi-FPGA debug approach 
 
To understand this more, let’s take a look at how multi-FPGA debug actually works. 
In the diagram below you can see that you must first mark probes at the RTL level so 
the probes are maintained throughout the compile flow. There should be no limit to 
how many probes you can mark as this simply tells the synthesis and partition tools to 
retain the RTL names for probing. After a design is partitioned to multiple FPGAs you 
can start selecting the signals you would like to probe in each FPGA. Multiple groups 
should be supported so you can see thousands of signals from any FPGA. Debug 
instrumentation is then added to each FPGA for FPGA place-and-route. Note that 
since the triggering logic and waveform storage are performed using an external 
module, the debug instrumentation in each FPGA consumes very little resources 
inside your design FPGA. 
After the multi-FPGA design is compiled and downloaded to FPGAs, you can now set 
your trigger conditions and the information is uploaded into the dedicated debug 
module hardware. When you start running your design, the debug module will 
capture and store the waveforms continuously from multiple FPGAs in external DDR 
memory. The communication bandwidth between the debug module to each FPGA 
needs to be high in order to trace wide waveform at high speed. Then, when a trigger 
condition is detected by the debug module, the DDR3 memory content is sent to the 
host computer for analysis via a high speed PC port such as Gigabit Ethernet. The 
waveforms in VCD or FSDB format can then be debugged using popular waveform 
debug tools such as Verdi. Signals from multiple FPGAs can be viewed in a single 
waveform window. 
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Multi-Debug Flow 

 
The use of a separate debug module of this nature allows for deep trace with a large 
number of RTL-level probes, the use of minimal FPGA resources to avoid design 
impact, and system-level debugging across the entire SoC design. An example of 
this device is the Prodigy Multi-Debug Module from S2C. The Prodigy Multi-Debug 
Module supports up to 32 FPGAs at a time with 16GB of DDR3 trace buffer and can 
utilize up to four 5GHz transceivers to capture waveforms from each FPGA to the 
debug module. The use of Gigabit Transceivers allows large amounts of data to be 
transmitted at high frequency. General-purpose I/O pins are not occupied by 
debugging so they can be used for interconnecting between FPGAs and external 
interfaces. Deep trace is achieved with 16GB or trace memory with actual trace depth 
dependent on the number of signals that are probed. S2C also provides an 
easy-to-use GUI (as shown below) that allows you to mark probes in RTL before 
synthesis, quickly locate probes after design partitioning, and select probes before 
FPGA place-and-route. 
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Mark probes in Prodigy Player Pro 

 
There are variations of the above multi-FPGA debug approach. There are solutions that 
use cascading instead of distributed topology to collect trace data from multiple FPGAs. 
Cascading topology means that trace data from multiple FPGAs needs to be collected to 
a single FPGA through potentially many FPGAs before transmitting to an external debug 
module for storage. Cascading topology is easier to implement in hardware but the large 
debugging data going from FPGA to FPGA can create a bottleneck that in turn reduces 
the amount of probes that can be seen at any one time and decreases the speed at 
which they can be captured. Distributed topology, on the other hand, sends debug data 
continuously from every FPGA directly to the external Debug Module.  The hardware is 
more difficult to implement but this method can maximize the amount of probes that can 
be seen at the same time as well as produce faster capture speed.  
 
 

Other advanced FPGA Debug Techniques 
 
One technique to increase trace depth is to compress the waveform being temporarily 
stored in the memory. The compression needs to be lossless and meet the performance 
required to continuously store incoming waveforms from multiple FPGAs. This waveform 
compression technique has already been developed in some third party FPGA debug 
tools to address the trace depth issue.  
 
Hardware assertions in FPGAs is another interesting area that can make debugging 
FPGAs easier. Instead of continuously capturing large amounts of data and looking for 
trigger conditions to shift out the waveform for analysis, you can embed the conditions 
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that you are looking for together with your design in the FPGA. When such conditions 
occur, you receive hig- level messages such as: a memory is full, a bus has a contention, 
the CPU is at a specific state, etc. Nevertheless, most tools today do not generate 
synthesizable assertions that can be mapped in FPGAs so designers will have to write 
and embed assertions in the FPGAs themselves. 
 
Finally, some newer FPGA families now support register and memory readbacks and 
even allow you to set the register and memory content. The readback feature enables 
you to access all nodes inside an FPGA at a given time. However to access that 
information, you would need to stop the design clock to shift out the register data. 
Therefore this feature can only be used when the design is run in a controlled clock 
environment and not really useful when running FPGA prototypes in or close to real time 
speed. In addition, just by taking a snapshot of what’s inside an FPGA cannot solve the 
issue/bug you are looking for. Are you taking the right snapshot and how many snap 
shots do you need to take? Readback data is often shifted out through a JTAG port 
which is also very slow when dataset is large. FPGA vendors do have plans to improve 
this feature by allowing shifting out the readback data without stopping the clock as well 
as using a faster protocol to shift out the data. We hope to see better support of this 
feature from Xilinx and Altera and also a complete environment that allows designers to 
quickly see what they are looking for.  


