
 White Paper

© 2004-2017 S2C, Inc. 1 Employing Multi-FPGA Debug Techniques

Employing Multi-FPGA Debug Techniques

Traditional FPGA Debugging Methods
Debugging in FPGAs has been difficult since day one. Unlike simulation where
designers can see any signal at any time, signals when mapped to a FPGA may be
difficult to locate or even worse optimized away. Even after you identify where the
signal is, it may be difficult to capture the time period in which you would like to
observe that signal as the FPGA runs at real speed and you cannot continuously
capture and store the waveform of that signal. Therefore, some sort of triggering and
waveform storage circuit is needed to perform debugging in an FPGA. Let us take a
look at the two popular approaches today: external logic analyzer and internal logic
analyzer.

External Logic Analyzers

Let’s first take a look at the use of external logic analyzers that have been in use for
years. Popular external logic analyzers today are from Agilent and Tektronix and can
sample at GHz frequency and store GBs of waveforms. External logic analyzers have
the ability to store large amounts of trace data but for the data to be useable, the data
needs to be taken off the chip, which can be a difficult task. The signals, or probes,
that a designer wants to observe need to be sent to FPGA I/O pins to connect to a
logic analyzer. Since some probes may be buried deep inside design hierarchy, it
may be time-consuming to get the right probes to the top of the design.

Physically, you also need some kind of adapter card that connects the FPGA I/O pins
to the logic analyzer header. For example, Agilent logic analyzers use a 38-pin Mictor
connector. Most off-the-shelf FPGA boards do provide optional daughter cards that
can connect the FPGA I/O pins to the 38-pin Mictor connector. If you are building
your own (RYO) board, then you should reserve a set of pins to connect to the Mictor
connectors if you choose to have the ability to observe through a Logic Analyzer.

The biggest drawback for the use of external logic analyzers is actually the limited
number of probes you can observe at a time since there are only a limited number of
FPGA I/O pins you can use for debug. In most designs, the majority of FPGA I/O pins
are used for external target interfaces or used as interconnects to other FPGAs if
more than one FPGA is used. Therefore, reserving a large amount of pins for
debugging through an external logic analyzer may not be feasible. Multiplexing the
probes to I/O pins can solve the limited pin issue but is almost never used since

© 2004-2017 S2C, Inc. 2 Employing Multi-FPGA Debug Techniques

external logic analyzers need to capture data at real speed and also need to support
de-multiplexing on the logic analyzer side.
Once connected, the external logic analyzer is used to set up triggering and data
capture conditions. Triggering is typically done using a state-machine technique
whereby values are specified for a signal and then either the data is captured or a
different condition is sought after on another state. The signals remain static while the
conditions can be altered at any time. Trace memory using an external logic analyzer
is rather large therefore memory can afford to be wasted trying to find trigger
conditions that are close to desired observation points. The advantage of an external
logic analyzer is that it can sample at high frequency (in the GHz range), at high
accuracy, and support very complex triggering conditions. Today, some designers
still prefer to use an external logic analyzer because of these advantages as well as
the feeling that debugging needs to be seen on real equipment, not just through a
software tool.

Internal Logic Analyzers
Internal logic analyzers such as Xilinx’s Vivado or Altera’s SignalTap utilize cores that
are embedded into the design whereby the trigger conditions are set using a GUI in
software on a PC through a JTAG interface. The captured data is transferred to the
PC where it can be viewed and analyzed. The internal logic analyzers provided by
the FPGA vendors are tightly integrated with their FPGA place and route tool making
them easy to learn and use.
However, trace data needs to be stored in the FPGA internal block memory before a
triggering condition is met and therefore they can only achieve very limited width and
depth. Often, you have to choose between limiting the amount of memory you can
have for your design versus allocating some memory for debugging. When a
triggering condition is met, the logic analyzer stops storing new waveforms in the
memory and shifts out current memory content through JTAG. The process can be
slow if trace data is large. The probes must be statically defined and trigger
conditions can be dynamically changed during debug just like with external logic
analyzers. Most internal logic analyzers only support probing at the gate level so
signal names may have changed or may have even been optimized away. Probes
are static, meaning that to change probes you usually need to re-compile the design.
Some third party internal logic analyzers do support RTL probing which can improve
the user experience. They also provide more advanced triggering and analytic
features that allow you to get meaningful data from limited amount of waveform
storage memories inside an FPGA.
Even though internal logic analyzers supplied by the FPGA vendors have quite a few
limitations, they are still by far the most popular tools used for FPGA debugging today.
This is due to their relative low-cost and tight integration with the FPGA vendors’ own
place-and-route tools.

© 2004-2017 S2C, Inc. 3 Employing Multi-FPGA Debug Techniques

Multi-FPGA Debugging Methods

External and FPGA Internal Logic Analyzers are better suited for debugging a single
FPGA. Although external logic analyzers can probe signals simultaneously from a
multi-FPGA environment, the limited number of probes available makes debug
inefficient. Debugging only one FPGA at a time in a multi-FPGA environment makes
effective debug of the design significantly more difficult, time-consuming, and
error-prone. These logic analyzers can only provide a subset of the picture in which
to debug and don’t have the trace depth for delving into the behavior of a multi-FPGA
design. Debugging only a piece of the design at a time can lead to errors in other
parts of the design as the bugs are fixed. The difficulties involved with this type of
approach are illustrated in the diagram below.

What’s needed is a holistic approach to debug for multi-FPGA platforms to ensure
design behavior is not affected as bugs are corrected because RTL-level signals and
module names are maintained throughout. With the use of a configurable external
module, multi-FPGA debug will also allow for the detection of very hard to find corner
case bugs because of the deep trace depth that can be achieved.

© 2004-2017 S2C, Inc. 4 Employing Multi-FPGA Debug Techniques

Benefits of using a multi-FPGA debug approach

To understand this more, let’s take a look at how multi-FPGA debug actually works.
In the diagram below you can see that you must first mark probes at the RTL level so
the probes are maintained throughout the compile flow. There should be no limit to
how many probes you can mark as this simply tells the synthesis and partition tools to
retain the RTL names for probing. After a design is partitioned to multiple FPGAs you
can start selecting the signals you would like to probe in each FPGA. Multiple groups
should be supported so you can see thousands of signals from any FPGA. Debug
instrumentation is then added to each FPGA for FPGA place-and-route. Note that
since the triggering logic and waveform storage are performed using an external
module, the debug instrumentation in each FPGA consumes very little resources
inside your design FPGA.
After the multi-FPGA design is compiled and downloaded to FPGAs, you can now set
your trigger conditions and the information is uploaded into the dedicated debug
module hardware. When you start running your design, the debug module will
capture and store the waveforms continuously from multiple FPGAs in external DDR
memory. The communication bandwidth between the debug module to each FPGA
needs to be high in order to trace wide waveform at high speed. Then, when a trigger
condition is detected by the debug module, the DDR3 memory content is sent to the
host computer for analysis via a high speed PC port such as Gigabit Ethernet. The
waveforms in VCD or FSDB format can then be debugged using popular waveform
debug tools such as Verdi. Signals from multiple FPGAs can be viewed in a single
waveform window.

© 2004-2017 S2C, Inc. 5 Employing Multi-FPGA Debug Techniques

Multi-Debug Flow

The use of a separate debug module of this nature allows for deep trace with a large
number of RTL-level probes, the use of minimal FPGA resources to avoid design
impact, and system-level debugging across the entire SoC design. An example of
this device is the Prodigy Multi-Debug Module from S2C. The Prodigy Multi-Debug
Module supports up to 32 FPGAs at a time with 16GB of DDR3 trace buffer and can
utilize up to four 5GHz transceivers to capture waveforms from each FPGA to the
debug module. The use of Gigabit Transceivers allows large amounts of data to be
transmitted at high frequency. General-purpose I/O pins are not occupied by
debugging so they can be used for interconnecting between FPGAs and external
interfaces. Deep trace is achieved with 16GB or trace memory with actual trace depth
dependent on the number of signals that are probed. S2C also provides an
easy-to-use GUI (as shown below) that allows you to mark probes in RTL before
synthesis, quickly locate probes after design partitioning, and select probes before
FPGA place-and-route.

© 2004-2017 S2C, Inc. 6 Employing Multi-FPGA Debug Techniques

Mark probes in Prodigy Player Pro

There are variations of the above multi-FPGA debug approach. There are solutions that
use cascading instead of distributed topology to collect trace data from multiple FPGAs.
Cascading topology means that trace data from multiple FPGAs needs to be collected to
a single FPGA through potentially many FPGAs before transmitting to an external debug
module for storage. Cascading topology is easier to implement in hardware but the large
debugging data going from FPGA to FPGA can create a bottleneck that in turn reduces
the amount of probes that can be seen at any one time and decreases the speed at
which they can be captured. Distributed topology, on the other hand, sends debug data
continuously from every FPGA directly to the external Debug Module. The hardware is
more difficult to implement but this method can maximize the amount of probes that can
be seen at the same time as well as produce faster capture speed.

Other advanced FPGA Debug Techniques

One technique to increase trace depth is to compress the waveform being temporarily
stored in the memory. The compression needs to be lossless and meet the performance
required to continuously store incoming waveforms from multiple FPGAs. This waveform
compression technique has already been developed in some third party FPGA debug
tools to address the trace depth issue.

Hardware assertions in FPGAs is another interesting area that can make debugging
FPGAs easier. Instead of continuously capturing large amounts of data and looking for
trigger conditions to shift out the waveform for analysis, you can embed the conditions

© 2004-2017 S2C, Inc. 7 Employing Multi-FPGA Debug Techniques

that you are looking for together with your design in the FPGA. When such conditions
occur, you receive hig- level messages such as: a memory is full, a bus has a contention,
the CPU is at a specific state, etc. Nevertheless, most tools today do not generate
synthesizable assertions that can be mapped in FPGAs so designers will have to write
and embed assertions in the FPGAs themselves.

Finally, some newer FPGA families now support register and memory readbacks and
even allow you to set the register and memory content. The readback feature enables
you to access all nodes inside an FPGA at a given time. However to access that
information, you would need to stop the design clock to shift out the register data.
Therefore this feature can only be used when the design is run in a controlled clock
environment and not really useful when running FPGA prototypes in or close to real time
speed. In addition, just by taking a snapshot of what’s inside an FPGA cannot solve the
issue/bug you are looking for. Are you taking the right snapshot and how many snap
shots do you need to take? Readback data is often shifted out through a JTAG port
which is also very slow when dataset is large. FPGA vendors do have plans to improve
this feature by allowing shifting out the readback data without stopping the clock as well
as using a faster protocol to shift out the data. We hope to see better support of this
feature from Xilinx and Altera and also a complete environment that allows designers to
quickly see what they are looking for.

