
Getting
the Most Out of

FPGA Prototyping



Table of Contents

● Five Challenges to FPGA-Based Prototyping  ---- ( Page 4 )

● Big Design – Small Budget?  ---- ( Page 10 )

● Transactors -- Expanding the Role of FPGA-Based Prototypes  ---- ( Page 15 )

● FPGA Prototyping of System-on-Chip (SoC) Designs  ---- ( Page 20 )
The need for a complete prototyping platform for any design size at any design
stage with enterprise-wide access, anytime, anywhere.

● Introduction  ---- ( Page 3 )



Whether you are designing or verifying extremely complex cutting edge designs 
or more mainstream design, FPGA prototyping can help you achieve your 
goals with maximum benefit.  The key to getting the most out of FPGA 
prototyping requires a good understanding of how this technology works and 
the FPGA prototyping solutions that match your design and verification 
requirements.  

This eBook contains of series of articles published in EE Times that can help 
you navigate the world of FPGA prototyping technology – everything from 
overcoming FPGA prototyping hurdles to expanding the use of your FPGA 
prototype upstream of the design flow to using FPGA prototyping for even the 
largest designs.  The eBook also gives you insight into how a complete 
prototyping platform can help for any design stage, any design size, and with 
enterprise-wide access, anytime, anywhere.

Introduction

3



Ron Green, S2C Inc. 9/19/2014 01:05 PM EDT

The state of the art has progressed spectacularly since early forays into FPGA-based 
prototyping, but there are still challenges to be overcome.

What is FPGA prototyping, and why should I care? Not long after the introduction of 
FPGAs in the late 1980s, engineers seized upon these devices for building system 
prototypes of ASIC and SoC designs. Containing vast amounts of configurable logic, 
these versatile components were a natural choice for building and testing the latest 
designs. As designs grew in both size and complexity, FPGAs also grew to provide ever-
increasing (equivalent) gate counts.

With earlier generations of FPGAs, it often took a large array of devices to fully 
accommodate a logic design. However, using today's devices with their mega-million 
gate counts, it may require only a handful of devices -- or even just one -- to implement 
a complete design.

The utility of a working FPGA prototype is undisputed. It allows hardware designers to 
develop and test their systems, and it provides software developers early access to a 
fully functioning hardware platform.

Five Challenges to FPGA-Based Prototyping

A prototype is used to develop both hardware and software iteratively. Exploring their 
interactions often has implications for the original system specification.

4



There are a number of key advantages that FPGA-based prototypes provide. These may 
be summarized as follows.

 Beyond the limit: At some point, software-only simulations hit the limit in terms of 
speed and capacity needed to run the latest designs effectively. If accurate software 
models are not available, prototyping may be the only option.

 Ahead of the silicon: An FPGA-based prototype can provide a functioning hardware 
platform long before silicon is available. This enables early software development 
tasks such as OS integration and application testing. Only a hardware prototype will 
run fast enough for practical software development.

 Ideal test platform: For designs that rely heavily on commercial IP, an FPGA-based 
prototype is an ideal test platform for ensuring all IP components perform together.

 Seeing is believing: FPGA prototypes can provide a demonstration vehicle for 
downstream customers, providing confidence the system is functioning as specified.

Five challenges Despite the advantages provided by FPGA-based prototyping, there are 
some significant hurdles to overcome. The five challenges presented below surfaced 
early on, and they haven't changed much over the years.

1. Design partitioning: Not many designs fit in a single FPGA; designs often must be 
partitioned across several devices. Initially, there were no tools to automate 
partitioning, so this task was tedious and error-prone. Worse still, designs that are 
split arbitrarily among several devices require a great deal of interconnect, which 
quickly surpasses the number of I/O pins available. Solving this problem requires a 
pin-multiplexing scheme.

Logical connections at the RTL level become a network of physical connections due to 
design partitioning.

5



2. Long bringup: Though engineering teams can design, build, and bring up a prototype, 
it can take a significant amount of effort. PCBs built to accommodate multiple FPGAs 
require numerous layers, and bringing up such a prototype typically requires 
verifying connectivity for more than 10,000 signals and pins. Mapping a design to 
FPGA prototype hardware can also be time-consuming and prone to error. When a 
design does not work in a prototype, it can be because of physical problems, design 
errors, or mapping issues. Without good techniques and the necessary tools, 
bringing up a prototype board can add months to your project schedule.

3. Difficult debug: It used to be that signals internal to an FPGA could not be probed 
unless they were brought out through the input/output (I/O). Fortunately, major 
FPGA vendors today have internal logic analyzers to address the visibility issue. 
However, many of these internal logic analyzers have several limitations, including 
support for only single FPGA debug, limited memory size using FPGA internal 
memory, and long place-and-route times to change probes.

4. Performance: After all this effort, the prototype may not perform as expected. 
Issues related to PCB physics -- such as signal routing, capacitive loading, and 
impedance matching -- will limit how fast the prototype can run. Considerations such 
as partition strategy, pin multiplexing, clock conversions, and FPGA timing 
constraints will also impact performance. Add to this the demands of high-speed 
transceiver interfaces -- such as PCIe, SATA, and 10G Ethernet -- that run in the GHz 
range. Without good design practices and reference designs, it is difficult to achieve 
the target performance in one pass.

5. Reusability: The ability to reuse a prototype (or even part of one) can save 
development time and lower implementation risk for future projects. But this is 
difficult to achieve with boards built for a specific project. As SoC designs grow in 
size, they may no longer fit in older FPGAs. If the interface to an external system is 
built directly on the prototyping board, it can't be reused for projects in which the 
interface is different.

Addressing the challenges With the advent of very large FPGAs, the problem of design 
partitioning diminishes to some degree. However, these devices also come with large 
pin-outs (e.g., some Xilinx Virtex-7 packages have nearly 2,000 pins), requiring boards 
with 18 signal layers (or more) coupled with multiple voltage planes. Large boards with a 
high number of interconnects still present many challenges. 

6



To handle the latest designs mapped to the latest devices, solutions like the following 
are required.

 Quality PCBs that can accommodate high speeds (e.g., minimal clock skew, equal-
length I/Os, stable power and ground, high signal integrity)

 Comprehensive self-test capabilities to detect and resolve hardware issues
 Integrated logic analyzer support to debug a design partitioned across multiple FPGAs
 Partitioning tools that can optimize results
 Systems with modular implementations that allow for scalability and reuse.

Due to these complexities -- and because development schedules don't allow time to 
develop a prototype from scratch -- commercial off-the-shelf prototyping and emulation 
systems have all but replaced internally developed solutions.

It's easy to see why this is the case. A robust off-the-shelf product provides guaranteed 
timing parameters, can be reused for multiple designs, and comes with dedicated 
technical support. The time spent on building a prototype from scratch is eliminated 
along with associated nonrecurring engineering (NRE) costs, which translates to realizing 
a working prototype faster with lower overall costs.

Selecting an FPGA-based prototyping system Ready-made prototyping solutions have 
become markedly more powerful in recent years, providing stable design environments 
and greater control through software and peripherals. There are a number of key 
parameters to consider if you're looking for an FPGA-based prototyping solution.

Capacity: Without enough gate-level capacity to accommodate your design, you can't 
build a prototype. Most systems need memory, too, so having sufficient memory 
available is critical.

Scalability: This is the ability to add capacity as needed, including gate-level and memory 
capacity. Scalability also deals with extensibility -- adding components such as 
processors and communication interfaces to grow the system functionality. Another 
dimension of scalability is system replication, the ability to quickly (and cost-effectively) 
produce copies of a given design for multiple deployments or intersystem testing.

7



Performance: The whole purpose of building an FPGA-based prototype is to achieve 
sufficient performance for the next level of tasks: hardware verification, software 
development and optimization, and system test. If your prototype can't deliver the 
performance, it will fail at its original purpose. Achieving performance requires the PCBs 
to be specially designed with careful interconnect and I/O design, including load 
balancing, clock performance, and the use of high-speed communication channels such 
as gigabit transceivers.

Compile/partition software: The ability to partition a design reliably across multiple 
FPGAs is critical to handling large designs. It's very important to have a software tool to 
make this task easy and reliable. The partitioning software must also optimize I/Os, 
clocks, and pin multiplexing to ensure maximum performance. Since the partitioning 
algorithms and hardware architecture are closely related, they yield the best results if 
they are considered together, so finding an integrated solution for this is preferred.

Debug tools: Debugging a design partitioned across multiple FPGAs is all but impossible 
without a tool that helps set up probes and makes signals easy to track based on their 
RTL-level names. Debugging should use FPGA I/O efficiently and maintain a useful debug 
trace depth.

Transaction-based interface: A recent DeepChip report stressed the importance of 
"transactors" -- interfaces that bridge the gap between abstraction levels. This could be a 
well-known bus protocol such as AXI or an industry-standard transaction protocol such 
as SCE-MI that communicates between a design mapped to an FPGA and a behavioral 
simulation. Transactors extend the functionality of the system, allowing it to be used for 
algorithm/architectural exploration, system integration with virtual prototypes, and 
exhaustive testing through software-generated corner tests. Where transactors are used, 
they must be efficient to avoid becoming bottlenecks to overall system performance.

Transactors make early software development a reality.
8



Reliability: A reliable hardware platform is paramount. In order to ensure reliability, a 
system should have self-test capability and should include protection mechanisms to 
guard against problems such as overcurrent, overvoltage, and over temperature.

Reusability: The ability to reuse your prototype platform enhances its usefulness, 
speeds the process of developing new prototypes, and reduces overall costs.

Remote management: Managing a prototype remotely makes it easier to deploy for 
multiple users and projects. As a result, prototype resources can be located anywhere --
in a centralized facility for easy maintenance, for example -- yet used by groups 
distributed around the world. The ability to download the FPGAs remotely makes it easy 
to reconfigure a system for any purpose.

Whither the state of the art? The state of the art has progressed spectacularly since 
early forays into FPGA-based prototyping. Commercial systems abound in both size and 
approach -- from huge emulation boxes costing millions of dollars to modest providers 
with small, low-end boards.

In your search for a solution, when comparing offerings from different vendors, I would 
urge you to take a look at the systems from S2C Inc., the company where I work. We 
offer a wide range of rapid prototyping solutions providing tremendous gate-level and 
memory capacity, all built upon the latest Xilinx and Altera FPGAs. You'll find a family of 
systems that are scalable, extensible, and reusable; that support advanced debug tools 
that work across multiple FPGAs; and that include transactors such as an AXI bus 
interface and a C-API to ease integration with other systems. Offering many advanced 
features, S2C's FPGA-based prototyping systems are extremely cost-effective. They are 
among the most advanced in the world, and they are built to handle the most ambitious 
design challenges.

-- Ron Green is the technical communications manager with S2C Inc. Prior to this, he was 
with Cadence Design Systems and Altos Design Automation. He has held various 
positions, including design engineer, AE, technical trainer, and technical writer. He 
appreciates clever designs, compelling materials, and the espressos at Mr. Toots 
Coffeehouse.

9



Mon-Ren Chene, S2C Inc. 11/19/2014 02:06 PM EST

Recent advancements in partitioning, debug, and scalability have made FPGA-based 
prototyping the ideal solution for even the largest ASIC/SoC designs.

A recent article, "Five Challenges to FPGA-Based Prototyping," explored some of the 
questions regarding FPGA-based prototyping and helped debunk the myths surrounding 
the issues of bring-up time, debug, performance, and reusability.

Over the next several articles, we'll look into the specifics of how FPGA-based 
prototyping can accelerate your design and verification.

There is a common misconception that FPGA-based prototyping is only suited to small 
designs and that the advantages of the technology diminish as designs grow. For 
verifying large designs, emulation is often the first technique that comes to mind. Now, 
emulation is fine for verifying large designs, but it comes at a cost. There is a penalty in 
both speed and price.

Emulation can be very slow at modeling your design, thereby impacting attempts at 
early software development. And emulation is expensive, putting it out of reach for 
companies on a budget. Every engineering manager is faced with considering time and 
cost tradeoffs to meet stringent time-to-market windows. To put these tradeoffs into 
perspective, let's first examine the advances in FPGA-based prototyping technology that 
help to close the gap between design size, speed, and cost.

FPGA technology advancements FPGA capacity has increased exponentially over the 
years. Today's largest V7 FPGAs from Xilinx based on a 28nm process have the capability 
to hold the equivalent of up to 20 million ASIC gates. By using an array of such FPGAs, 
we can leverage this further, with the potential to build a system that is close to half a 
billion ASIC gates. And the next generation of FPGAs, such as Virtex-UltraScale based on 
a 20nm process, holds even greater promise -- the prospect of building a practical and 
affordable system containing up to a billion gates.

FPGA-Based Prototyping: Big Design – Small Budget?

10



FPGA-based prototyping can also run at much higher speeds than emulation. Internal 
FPGAs can run at hundreds of MHz, and I/Os can run at the multi-GHz range depending 
on the I/O standard. Even with very large FPGA prototyping systems, you can still expect 
anywhere from 5 to 20MHz system speed. This is an order of magnitude faster than 
emulation, which usually runs in the sub-MHz range.

To explore this idea of using FPGA prototyping for big designs further, let's look at the 
key technology considerations for adopting prototyping for these designs.

Partitioning Partitioning is key when prototyping a large design using FPGAs. In the past, 
with smaller FPGAs, partitioning required cutting through an IP block and distributing it 
across multiple devices. Today, most design blocks easily fit within one FPGA, so 
partitioning is primarily the process of grouping select IP blocks together onto a single 
device. Furthermore, the adoption of new FPGA I/O technology such as 1GHz LVDS 
enables the interconnection of more I/Os between FPGAs using a pin-multiplexing 
scheme.

Partitioning software should also be considered. Along with other partitioning 
technology, the quality and usability of partitioning software such as Flexras and 
Mentor's Auspy have also significantly improved over the years. Similarly, the 
commercial partitioning tool from S2C has been used to partition a multi-core CPU 
design across 20 FPGAs.

11



Debug Partitioning and implementing the design in multiple FPGAs doesn't mean much 
unless you have the ability to debug the design effectively and efficiently. Many debug 
tools, including those provided by FPGA vendors, can only be used on a single FPGA. 
This is okay if you only have a single FPGA design or if you have the time to debug each 
FPGA on your system separately. But this can be both time-consuming and highly error-
prone. In addition, most of these debug tools utilize the FPGAs' internal memories, 
which results in very limited trace depth. Debugging a multi-FPGA design works better if 
you can look at multiple FPGAs at the same time. This reduces both debug time and 
errors, while also using external memory for increased capacity.

S2C offers a unique multi-FPGA debug solution that uses an external FPGA to connect to 
multiple FPGAs at the same time via Gigabit Transceivers and stores the captured 
waveforms on 16GB of external DDR3 memory.

Due to its speed, FPGA-based prototyping is ideally suited for identifying and locating 
such bugs as critical corner cases, bugs related to subjective data, and bugs that require 
extremely long runs of actual system data. With larger designs, it is critical to adopt 
FPGA-based prototyping debug earlier in the process so as to help reduce late-stage 
ECOs.

Scalability FPGA-based Prototyping can be used at various design stages such as 
algorithm/architectural exploration, IP development, and full SoC in-circuit testing. 
Having a scalable or modular FPGA-based prototyping system will maximize your 
investment so various design projects at different design stages can all share the same 
platform.

12



Having said all this, you need to perform due diligence when evaluating potential FPGA-
based prototyping systems. There are some such systems that are too specific in their use 
model to achieve this level of scalability. For example, FPGA boards utilizing PCIe are hard 
to scale beyond four FPGAs. Interconnections, global clocks, system control of multiple 
boards, power, and mechanical considerations become un-manageable. Most of these 
solutions also require too many cables making expansion unwieldy.

The following points should be considered in order to avoid any pitfalls:

 Adopt a platform that can be used by both smaller designs (requiring just one or two 
FPGAs) and bigger designs (requiring four, eight, sixteen, or more).

 Review the number of interconnections between each FPGA and how fast they run.
 Consider the reliability of the entire multi-board system, including mechanical, power 

supply, and self-test capabilities.
 Employ a global management solution that easily handles global clocks and resets 

everything via a software interface.

Budget tradeoffs As previously mentioned, engineering managers are consumed with 
overall budget tradeoffs. It is of utmost importance to strike the optimal balance between 
cost, resources, and time in order to achieve the necessary goals. Now, with the advances 
in FPGA-based prototyping technology to handle large designs, managers should take a 
second look at how to apply resources to their design.

Emulation, although effective, is expensive. Emulation also has debug limitations that 
FPGA-based prototyping can tackle much faster, thereby making a strong case for 
applying FPGA-based prototyping sooner so as to save time later in the flow. If a manager 
can apply a less expensive FPGA-based prototyping methodology sooner in the 
verification process, this could save hundreds of thousands of development dollars.

The cost and speed of FPGA-based prototyping has always been a good fit for smaller 
designs. The solution provided by S2C is a unique example of a system addressing these 
needs. Our offering allows one, two, and four FPGAs on a single prototyping board that 
can then be used in conjunction with other boards (using stacking/cabling or located in a 
chassis) to provide a system with up to 32 FPGAs. Using boards carrying a single FPGA 
module to form a big system offers maximum flexibility; using boards carrying four FPGA 
modules achieves minimum cabling.

13



The end result is that recent advancements in partitioning, debug, and scalability have 
made FPGA-based prototyping the ideal solution for even the largest ASIC/SoC designs.

— Mon-Ren Chene is currently the Chairman and Chief Technology Officer for S2C. He has 
more than 30 years of engineering and management experience in EDA and FPGA 
software/application development. He co-founded Osprey Design Systems that later 
merged with Aptix, where he served as Software Architect and VP of Software 
Development. Chene also held engineering and management positions at Quickturn
Design Systems, Xilinx, Cadence Design Systems, Silvar-Lisco Design Systems, and NCA. He 
holds five US Patents and three pending patents. He is a graduate of Stanford University 
with an MS in operations research.

— Max Maxfield, Editor of All Things Fun & Interesting

14



Transactors -- Expanding the Role of FPGA-Based 
Prototypes

FPGA-based prototypes offer unbeatable flexibility, capacity, and speed. Extending their 
functionality through the use of a transactor interface opens up tremendous possibilities 
to designers.

Continuing the discussions we began by considering the Five Challenges to FPGA-Based 
Prototyping, we'll now take a look at some recent functionality this is now available with 
the most sophisticated prototyping platforms.

Power to spare It wasn't all that long ago that FPGA-based prototypes were the sole 
province of hardware designers and lab technicians. Viewed as finicky boards covered 
with rows of devices and bristling with cables, they were relegated to back rooms where 
engineers would endlessly tinker with them in a desperate effort to bring up designs of 
limited size and complexity.

No more. Today's FPGA prototypes represent muscular platforms for developing ultra-
large systems running at blistering speeds. With this kind of power, these systems are 
used for a wide range of tasks, including design integration, system verification, and 
software development (see also Big Design -- Small Budget?).

This solution is well-suited to designs fully rendered in RTL that can be mapped to an 
FPGA. But what about cases where portions of the design are still only available as 
behavioral models in descriptions such as C++ or SystemC?

FPGA-based prototypes to the rescue... again The latest systems now provide 
transaction-level interfaces -- often referred to as "transactors" -- that bridge the 
abstraction level between behavioral models and live hardware. Transactors offer a way 
to communicate between software running on a host machine and an FPGA-based 
prototyping platform that often includes memories, processors, and high-speed 
interfaces.

Ron Green, S2C 2/27/2015 05:30 PM EST

15



One example of this is the ProtoBridge system from S2C, which supplies a transactor
interface between a software program and the world of AXI-compliant hardware. There 
are two key parts to this: an AXI-to-PCIe bridge that connects to a host computer, and a 
C-API that communicates to the design through the bridge. The software-to-AXI 
transactor offers new flexibility to designers building ARM-based systems. Also, coupling 
this to a PCIe interface supporting transfer speeds up to 500 megabytes/second provides 
a perfect development platform for data-intensive applications.

A Cornucopia of Applications A system like this allows designers to maximize the 
benefits of FPGA-based prototypes much earlier in the design project for algorithm 
validation, IP design, simulation acceleration, and corner case testing. A prototype 
combined with a transactor interface makes a range of interesting applications possible 
throughout the design flow:

 Algorithm/architecture exploration: When a new system is developed, behavioral 
models are created to explore different algorithms and architectures. But new 
systems are typically built upon the foundation of existing IP, often available in RTL. A 
transactor interface allows behavioral models to be co-simulated with RTL models, 
thereby exercising the full system regardless of the abstraction level or language used 
to define the different blocks.

16



 Early software development: The ability to run software at the earliest stage possible 
is becoming more important. It may be hard to access all the high-level models 
needed to implement a virtual platform capable of running software. Utilizing an 
FPGA with a transaction-level link to an ESL (electronic system level) design 
environment offers an effective solution. Tying together the programmer's 
development environment with the target platform from the hardware team allows 
the software to be developed earlier in the design cycle, and provides a way for each 
group to validate their changes against the work of the other team.

 Block-level prototyping: Mapping an entire design to an FPGA prototype can be 
challenging, especially when a large number of devices is needed. The use of 
transactors allows mapping designs block-by-block and verifying each block against its 
RTL-based simulation. This can be a very effective methodology, especially when 
separate teams are developing IP blocks independently. This approach can prevent 
issues from surfacing during integration.

 Simulation acceleration: RTL-level simulation alone can be prohibitively slow for 
verifying large designs. Mapping designs from a simulation environment to an FPGA 
prototype provides a high-performance, cycle-accurate test environment. Systems 
like this can run in the hundreds of KHz, typically out-pacing RTL-level simulation by 
three orders of magnitude.

17



 Design debugging: Debugging a complex design in an FPGA can be difficult, especially 
if access to a large amount of data in memory is needed. A transaction-level interface 
makes it both easy and fast to transfer large amounts of data in and out of memory. 
This can be used to read design conditions stored in memories and registers, or to 
write conditions back to memory, quickly getting to the design state required for 
debugging.

 Corner case testing: In-circuit testing is probably the most important reason for doing 
prototyping today. But in-circuit tests are usually based on un-constraint random tests, 
which don't always ensure complete test coverage, and which may not reflect real 
operating conditions at all. Using a transactor interface allows test cases developed in 
simulation to be run directly on the prototype, making these tests instantly available 
and insuring compliance. Moreover, these tests can be easily extended to large data 
sets, providing coverage for corner cases and hard-to-find bugs.

The great facilitator The addition of a transactor interface to an FPGA-based prototype 
facilitates development of new systems in interesting ways. As behavioral models are 
introduced, architectures become refined and block functionality determined. These 
blocks are eventually defined and implemented as part of the new system. But blocks 
that are defined and rendered in RTL become IP for the next generation of systems, 
allowing the cycle of development to repeat. In this way, the FPGA prototyping platform 
becomes a great facilitator -- the engine of system advancement.

18



This combination is too powerful to ignore. FPGA-based prototypes offer unbeatable 
flexibility, capacity, and speed. Extending their functionality through the use of a 
transactor interface opens up tremendous possibilities to designers. These are tools and 
techniques no team should be without.

-- Ron Green is the technical communications manager with S2C Inc. His experience 
includes design and verification, IC layout, analog tools, cell characterization, emulation, 
and FPGA-based prototyping. A Silicon Valley veteran, Ron has held positions in 
engineering, applications, program management, and technical marketing. He 
appreciates clever designs, compelling materials, and the espressos at Mr. Toots 
Coffeehouse.

19



FPGA Prototyping of System-on-Chip (SoC) Designs

Today's off-the-shelf FPGA prototyping systems have established their value in every 
stage of the system-on-chip (SoC) design flow. Moving beyond traditional applications 
such as in-circuit testing and early software development, this technology has expanded 
to encompass functional design and verification (see also Transactors -- Expanding the 
Role of FPGA Prototypes).

FPGA-based prototypes work with electronic system level (ESL) design environments to 
refine, validate, and implement the chip's architecture, and with simulation tools to 
achieve an order of magnitude (or more) increase in verification speed.

There are several drivers of this technology: the need to quickly construct high-
performance prototypes; the demands of growing design size and complexity (see also 
FPGA-Based Prototyping: Big Design – Small Budget?); and the need to utilize 
prototypes as an enterprise-wide resource. Globalization has replaced localized design 
teams with teams that are geographically-distributed. Consequently, FPGA prototyping 
solutions must now provide network access and remote management capabilities 
coupled with the ability to expand resources such as memory or add-on components. 
This allows realizing multiple hardware and software implementations for numerous, 
geographically-dispersed teams.

The FPGA prototyping system must offer enterprise-wide accessibility -- a complete 
prototyping platform is one that operates at any functional design stage, with any design 
size, and across multiple geographical locations. All of these capabilities must be 
available on-demand and be remotely-accessible at all times. Such an approach 
significantly increases engineering productivity and reduces the end-product's time to 
market, while increasing its return on investment (ROI), as well as increasing the lifetime 
ROI of the FPGA prototyping platform itself.

The need for a complete prototyping platform for any design size at any design 
stage with enterprise-wide access, anytime, anywhere.

Mon-Ren Chene, S2C 4/8/2015 06:30 AM EDT

20



Growing SoC design challenges SoC size and complexity are increasing at an exponential 
rate. According to a keynote presentation by Gary Smith at the International Technology 
Roadmap for Semiconductors Conference in 2013, potentially available SoC gate counts will 
quadruple from 420 million in 2014 to 1.68 billion in 2020. International Business Strategies 
(IBS) reported that software development and hardware verification are the two leading 
factors in total SoC design cost (see Figure 1).

These software- and complexity-driven cost and effort increases are accompanied by an 
elevated risk of late delivery, and even the possibility of outright failure. Cost and risk are 
generally mitigated by the extensive use and reuse of intellectual property (IP) -- both 
silicon and software -- but the complete silicon/software design must nonetheless be 
prototyped and tested as a whole.

Figure 1. Software development and hardware verification are the predominant factors 
in SoC design cost (source: IBS). (Click here to see a larger image.)

21



FPGA-based prototyping solutions: Addressing today's needs For an FPGA prototype to 
meet the requirements of this "whole design", it must address the following criteria:

 User access
 Compile/partition efficiency
 System interface capability
 Scalability
 Extensibility
 Reusability
 Analysis and debug capability
 Application throughout the functional design flow

Utility of current FPGA-based prototyping systems

The key criteria for evaluating the utility of an FPGA-based prototyping system are as 
follows:

1. Access to FPGA prototyping systems must not be constrained by the use of localized 
systems that require local management and control. Limited access can present a 
significant hindrance to modern SoC design teams -- especially software development 
teams -- which are often globally distributed.

2. The compile and build environment must incorporate important features such as the 
ability to partition a design automatically and/or with user guidance; automatic pin-
multiplexing insertion and clock analysis. Also important are a convenient user interface 
to FPGA-specific place-and-route (P&R) tools allowing for quick flow turnaround for 
changes and ECOs.

3. Performance, which is the key reason teams develop FPGA-based prototypes. FPGA-
based prototypes can be expected to realize system speeds in the tens of megahertz --
some have been known to run at 100MHz and more. High-speed FPGA prototypes 
enable early software development.

4. High-speed interfaces and add-ons, such as PCIe, USB, 10GE, ARM Debugger, and 
DDR memory are important for building a complete development platform. Transaction-
level interfaces such as a CAPI and AXI bus protocol support greatly expand the utility of 
the system.

22



5. The ability to scale and extend the system is also an important consideration. This 
involves adding gate-capacity and memory, as well as processors and communication 
interfaces to grow the system's functionality.

6. Reusability is inherent in off-the-shelf FPGA prototyping systems. A system's 
reusability in subsequent designs is determined by the quantity and diversity of its 
resources -- gates, memory, and processing power. These resources must grow to 
remain up to date with changing functionality requirements.

7. Analysis and debug must not be limited to one FPGA at a time, which makes whole-
system debug slow and tedious. Signal probing should work easily with designs 
partitioned across multiple FPGAs; a deep debug trace capability must be provided with 
probing schemes that maximize the use of FPGA pin I/O.

8. Support for a mixed-level prototype. Often during development, not all blocks are 
available in RTL. A complete prototyping system should support behavioral blocks 
running on a host computer to interface and communicate with RTL blocks mapped to 
the FPGAs.

The complete solution
Given the attributes and shortcomings of existing FPGA-based prototyping systems, 
what should be the attributes of the next generations of systems? As noted, the coming 
generations of off-the-shelf FPGA prototyping solutions must offer greater choice and 
flexibility in the deployment of resources. Consequently, the coming generations must 
take a "complete prototyping platform" approach as follows:

1. Provide sufficient performance to operate as software development platforms. This 
requires PCBs with superior signal characteristics, clocking strategies, and connector 
structures.

2. Provide capacity, scalability, extensibility, and reusability. Modern FPGA-based 
prototypes can support designs from 20M to 500M gates. Add-on DDR2/3 modules 
can quickly create systems with multi-gigabyte memories. Peripherals and 
processors available on daughter cards make it easy to add various IP functionality.

23



3. Increase scalability, extensibility and reusability by enabling the deployment of an 
ever-increasing range of IP -- both silicon and software -- and pre-designed board-
level subsystems. This requires the availability of copious IP and board-level 
reference design options.

4. Support the latest high-speed interfaces such as PCIe, HDMI, and 10Gig Ethernet.

5. Include an easy compile and build environment to accelerate the process of 
prototype bring up and ease the processing of design ECOs. Automatic partitioning 
tools should accept user input that can result in faster-running prototypes.

6. Offer global remote access to centralized prototyping resources, enabling access by 
multiple, geographically-distributed teams. This can be achieved by cloud-based 
control and storage.

7. Support behavioral/transaction-level interface and standard bus protocols such as 
AXI to ease system integration and provide a platform for software development.

8. Perform analysis and debug of the whole SoC design at full system speed with a 
focus on "deep" hard-to-find bugs. Simultaneously, it must achieve at least an order 
of magnitude increase in signal and cycle observability without consuming FPGA 
resources such as gates, memory, and I/O connectivity. This requires the 
implementation of structures that offer "pervasive observability" of design 
functionality. Fast probe-swapping is essential.

9. Continue to team with functional design and verification tools to perform tasks at 
every stage of the functional design flow, such as cross-leveraging the strengths of 
FPGA prototyping and simulation. This requires tight, well-integrated bridges 
between the diverse design environments.

24



Conclusion A modern FPGA-based prototyping system must meet a number of 
demanding criteria to help designers realize their latest system-on-chip designs. An 
extensible, scalable system must offer a variety of both hardware and software 
interfaces. High-performance and extensive debug capabilities are critical requirements. 
The ability to function as an enterprise-wide resource, with the easy access and 
configurability of a cloud service, multiplies the value of such a system. Meeting these 
criteria and combining features in a rich set of functionality qualifies a system as being a 
truly complete prototyping platform.

Mon-Ren Chene is currently the Chairman and Chief Technology Officer for S2C. He has 
over thirty years of engineering and management experience in EDA and FPGA 
software/application development. He co-founded Osprey Design Systems, which later 
merged with Aptix, where he served as Software Architect and VP of Software 
Development. Chene also held engineering and management positions at Quickturn
Design Systems, Xilinx, Cadence Design Systems, Silvar-Lisco Design Systems, and NCA. 
He holds five US Patents and three pending patents. Chene is a graduate of Stanford 
University with an MS in Operations Research.

25


