
Fax: +1 408 549 9948

 San Jose, CA 95110, USA
1754 Technology Drive, Suite 6 20

White Paper

A Multi-FPGA Based Platform for emulating a 100M-transistor-scale
Processor with High-speed Peripherals

2009

This published paper was solely written by Institute of Computing Technology (ICT), Chinese Academy of
Science. It describes how ICT used S2C Dual Virtex-5 TAI Logic Modules to prototype a 100 million transistor-
scale processor at 25MHz to boot unmodified operating system for carrying out a variety of architectural
explorations. The paper identified several key challenges when prototyping a complex design onto multiple
FPGA devices and how the ICT research engineers were able to solve these challenges including FPGA
partitioning, pin limitations, emulating high-speed IO and debugging the design on S2C’s TAI Logic Module.

S2C Inc.

Tel: +1 408 213 8818

www.s2cinc.com

1

ABSTRACT
Software simulation has become a powerful method in

development of processors, but to simulate processors with a state
of art architecture has become extremely difficult. The simulation
of this kind of the processors is time-costing as the scale becomes
larger and larger complied with the Moore’s low. Accompanied
with the enlargement of scale, many high-speed IOs are integrated
into processors as SOC chips, causing another problem that the
verification of high speed IOs is very limited for software
simulation. With the help of FPGA based platform, the verification
and evaluation of processors can be done in a relative high speed.
The FPGA based platform also provides a real environment with a
lot of real chips working together for the verification of high speed
IOs. In this work, a multi-FPGA based platform used for
verification and evaluation of Godson-2G processor is introduced.
Tactics for a semi-custom partitioning and the design flow are
discussed. Method to emulate DDR and HyperTransport PHYs is
offered after that. Instrumentation based debugging and the
performance evaluations are both presented at the end of this paper.

Categories and Subject Descriptors
C.1.0 [Processor Architectures]: General

General Terms
Design, Verification, Performance

Keywords
Godson-2G, Multi-FPGA, emulate, verification, evaluation

1. INTRODUCTION

Today’s general-purpose processors have been evolving towards
having more functional peripherals on-chip to provide higher
performance and better cost-effective solutions. AMD has been
using on-chip memory controller and HyperTransport [1] [2] links
for years in its Athlon64 and Opteron [3] processors. Intel’s latest

Nehalem [4] processor family also departs from the traditional
front side bus and integrates the memory controller into the CPU.
Furthermore, other system components such as PCI-E, GPU,
finding their positions in general-purpose processors has been a
matter of “when”, rather than “if”.

With the unprecedented level of chip integration leading to
much more design and verification efforts, processor designers are
facing great challenges. More peripheral components added into
the chip expand the already huge design space. Interactions
between components get much more complicated. System-level
evaluation and decision-making are suffocated by the slow
simulation speeds. Meanwhile, the lack of detailed and ample
peripheral modeling in the RTL-level simulation environments
brings high risk into the pre-silicon verification.

To address challenges from design exploration and pre-silicon
verification, more and more processor designer resort to FPGA-
based prototype. As widely-deployed platforms in the area of SoCs
and ASICs, the flexibility, speed, and enormous capacity qualifies
them for the emulation of large and complex systems.
Nevertheless, a typical state of art processor always exceeds the
capacity of the largest modern FPGA device. The largest FPGAs
before 2009 in production have an estimated equivalent capacity of
about 1.5 million gates or 30 million transistors. Prototyping a
modern processor larger than this means spreading the
functionality across multiple FPGAs. It is a complicated task, but
one that is well worth the effort.

This paper presents a multi-FPGA based platform (called MFP)
which prototype the Godson-2G (also known as Loongson-2G), a
modern superscalar processor with transistor number exceeding
100M .To the best of our knowledge, the MFP is the first platform
capable of emulating a state of art processors across multi-FPGA.
Taking into account the trend toward ever-increasing levels of
processor integration, we view Multi-FPGA as inevitable in the
long term for the pre-silicon functional verification and
architectural evaluation. It’s also a very promising and
straightforward step to emulate huge ASICs/SOCs chips.

In the MFP system, different kinds of I/O peripheral are working
together. The emulated processor core can run at up to 25 MHz. As
well, the integrated DDR2/3 controller can work at 40 MHz and
HyperTransport controller at 25 MHz. At such speeds, it is
sufficient to boot unmodified operating system, enabling processor
designer to carry out a diverse variety of architectural explorations.
Time-consuming benchmarks, including both computing-intensive
and IO-intensive applications, can be completely and fast evaluated.
For example, the entire SPEC CPU 2K benchmark in train scale
can be completed within twelve hours, in contrast to about a week
by the Xtreme emulation [5], resulting in a significant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

A Multi-FPGA Based Platform for emulating a 100M-transistor-scale
Processor with High-speed Peripherals

Weiwu Hu1, Huandong Wang1,2, Xiang Gao1, Yunji Chen1, Dan Tang1,2
1Key Laboratory of Computer System and Architecture, Institute of Computing Technology, Chinese Academy

of Sciences, Beijing 100190, China
2Graduate University of Chinese Academy of Sciences, Beijing 100049, China

{hww, wanghuandong, gaoxiang, cyj, tangdan, }@ict.ac.cn

2

improvement into the pre-silicon performance prediction.

The key contributions of the work include:

 We analyze a 100M-transistor-scale superscalar processor
implementation on two virtex-5 FPGAs. Methodology to
partition, synthesis, and map an almost-unmodified RTL
design to a multi-FGPA target are detailed.

 We present the experiences under FPGA environment to
emulate the high-speed I/O peripherals, including Hyper-
Transport and DDR2/3.

 System-level Debugging, we share our methods and
experience in tackling the problem at system-level
developing.

 Preliminary evaluation of pre-silicon performance, including
computing-intensive and I/O-intensive bench-marks
validation is presented.

The remaining sections of this paper are organized as following.
Section 2 summarizes related work and introduces the architecture
of Godson-2G micro-processor. Section 3 describes the multiple
FPGA platform used in this work. Section 4 discusses the semi-
custom partitioning and design flow. Section 5 presents the method
to emulate the high speed IO. Section 6 details a debugging method
in FPGA and Section 7 gives some evaluation results.

2. BACKGROUND

As the scale of chip design increasing rapidly, it is difficult to
evaluate a design only by software simulation. Although the
emergency of multi-FPGA based [6] or hardware based emulation
accelerator greatly speeds up simulation or emulation, IO behaviors
and different IO specifications are still hard to verify. While the
capability of a single FPGA platform is too small for emulating a
100M-transistor-scale processor, a multi-FPGA based platform is
one of the best way to verify and evaluate the design of Godson-2G
micro-processor.

2.1. Related Work

The three main options for evaluation and verification open to
processor designers are simulation, emulation, and FPGA-based
prototypes. The ever-increasing chip scale makes the software
simulation notoriously slow to simulate an entire chip at RTL-
accurate level. The fastest true RTL-accurate simulators of modern
processors run at about 1 KHz to 10 KHz, which means two
minutes of simulated time in approximately corresponding to one
to ten years of simulation time. At such speeds, it is impractical to
use realistic program to explore, evaluate and refine micro-
architectures.

Hardware-based emulation is another reasonably popular
technique, which can be viewed as a kind of accelerated and board-
pluggable simulation. Several companies such as
Cadence/(Xtreme,Palladium [7]), Mentor, Synopsys, EVE and
Tharas sell FPGA-based accelerators, emulators or tools that take
arbitrary RTL and map it to hardware to improve simulation
performance. The emulators tend to be very expensive due to their
complexity. With an equivalent speed of only 500 KHz to around
2MHz, however, it's still two to three orders slower than the real
chip. As peripheral I/O devices in the emulation system are
working at their real speed, the extreme speed imbalance between
I/O peripheral and the emulated processor will introduce many odd
obstacles to system-level evaluations. Taking the TCP/IP
connection as an example, low frequency of the processor lead to

unexpected packet losses and connection termination. Besides, I/O
Bus adhere to the emulated processor should also work at a much
lower speed than the sane frequency, causing I/O devices on the
bus behave abnormally.

For almost all mainstream architectures, there have been FPGA-
synthesizable processor designs, including ARM [8], MIPS [9],
SPARC [10], Itanium [11], and PowerPC [12]. Lu et al. [13]
previously presented an FPGA-synthesizable version of Intel’s
vintage Pentium processor. Another notable work was the Intel
Atom prototyping reported in [14], which for the first time
disclosed Intel’s effort to implement an FPGA-synthesizable
version of a modern x86 processor.

But the modern processor can accommodate only a fraction of
the whole processor chip, making system-level validation still a
dilemma.

Fortunately, Moore's law has not only enabled these dense
multi-core chips, it has also enabled extremely dense FPGAs.

Compared with powerful modern processor, processor cores
mentioned above are relatively simple and small. Even the biggest
one of them, namely Atom, consumes a total of 47.2 million
transistors, allowing the whole design being mapped into a single
FPGA. Contrary to these approaches, we implement the whole
processor chip into multiple FPGAs, which removes the chip-size
limitation caused by the bounded capacity of a single FPGA device.
Furthermore, on-chip peripheral interfaces are also integrated,
making the system-level validation feasible and reliable.

The RAMP collaboration [15] is building the necessary
infrastructure to compose systems of up to 1024 processors. It is
targeted at facilitating software research in many-core era. The
processor cores adopted by RAMP are simple in complexity and
small in size. One to two dozen cores can be programmed into a
single FPGA. However, it lacks the ability to validate a state of art
commodity processor that exceeds the capacity of a single FPGA.

2.2. The Godson-2G Processor

The Godson project, which was initiated by ICT-CAS in 2001,
was the first attempt to develop high performance general purpose
processors in China [16]. Godson-2G, the latest member of Godson
processors supposed to tape out in 2009, is the single core version
of Godson-3 [17]. The chip measures 53.90 mm2 in size and
consumes 106.8 million transistors. The estimated peak frequency
is up to 1GHz and the power dissipation is 5-7 Watt depending on
applications.

The architecture of Godson-2G is shown in Fig.1. The chip is
based on two crossbars with 128-bit width data buses. The
Crossbar with 2x2 ports called Level-1 Xbar connects the
processor core, L2 Cache and HyperTransport controller. The other
one with 2x3 ports called Level-2 Xbar slots in between L2 Caches,
DDR2/3 controllers and PCI/LPC interface.

The processor core of Godson-2G (named GS464) implements
MIPS64 instruction set [18] in a four-issue, out-of-order execution
way [19]. It fetches and decodes four instructions per cycle and
dynamically issues them to five fully pipelined functional units
(two fix-point, two floating-point and one memory access unit).
Instructions are issued out of order by two 16-entry reservation
stations and are committed in program order by a 64-entry reorder
queue. Two 64-entry physical register files are used for register
renaming of the general purpose and floating point registers
separately. An 8192-entry pattern history table, a 9-bit global
history register, a 16-entry branch target buffer and a 4-entry return
address stack keep the branch history information for prediction.
GS464 has a 64KB instruction cache and a 64KB data cache. A 24-

3

entry memory access queue that contains a content-addressable
memory for dynamic memory disambiguation supports out-of-
order memory access and non-blocking cache in GS464.

The Godson-2G supports a broad range of IO interfaces. These
peripherals can be classified into two categories: the high speed IO
and the low speed IO. High-speed IO controllers are critical for
efficient executions of throughput based workloads, while low
speed IO controllers provide flexibility to form a functionally
complete system. The current version of Godson-2G encompasses
one high-speed HyperTransport controller. The low speed IO
interfaces in Godson-2G include PCI/LPC controller, UART
controller, SPI controller and GPIO controller.

The two crossbars inside the Godson-2G processor are running

different protocol. A cache coherence supported AXI protocol [20]
is running on the Level-1 Xbar, while a standard AXI protocol is
running on the Level-2 Xbar. Devices with requirement of cache
coherence are placed onto the level-1 crossbar, such as L2 cache
and Hyper-Transport controller. As the HyperTransport controller
is placed on the Level-1 Xbar, cache coherence protocol between
the native cache and IO device or remote cache in the other
processors connected by the HyperTransport bus can be simply
maintained. [21]

The low speed devices without cache coherence requirement are
placed onto the level-2 crossbar, such as PCI/LPC controller,
DDR2/3 SDRAM controller, UART controller, SPI controller, and
GPIO controller. Without cache coherence protocol supported,
software method can be used to maintain the coherence with
caches. [22]

3. STRUCTURE OF THE PLATFORM

As a high performance SOC chip, pre-silicon validation in the
FPGA platform of Godson-2G raise compelling requirements,
including:

 Completeness. The capacity of the platform should be big

enough to accommodate the whole chip design.
 Flexibility. The platform should be flexible for evaluating

different kinds of application, including benchmarks for
computing power and IO performance, running different kinds
of peripheral devices.

 Applicability. Fast and accurate performance prediction for
both IO-intensive and computing-intensive application.

To address these requirements and challenges, we propose a
two-board solution to spread system functionality across two
boards. The resulting MFP platform is constructed by a mother

board and an FPGA daughter board. The mother board contains all
necessary building peripheral chips and device slots, while the
FPGA daughter board hosts the whole Godson-2G. To ease
hardware platform setup, S2C’s Dual Virtex-5 TAI Logic Module
board is used as the FPGA daughter board. Two boards are erected
together through high-speed PCB-to-PCB connectors. The photo of
the Godson-2G MFP platform is shown in Fig. 2. The FPGA
daughter board is placed above the mother board in the left.

3.1. Mother Board

The mother board contains the LPC interface part, the PCI
interface part, SPI flash, UART ports and the south bridge part.
LPC interface is connected to a LPC flash which stores the CPU
booting codes, a nixie tube as debugging display and a super IO
chip. The super IO chip is used for the function of serial port, PS/2
ports for keyboard and mouse. The PCI interface is led to two
standard 32-bit PCI sockets. The LPC, SPI, UART and PCI
interfaces on the mother board are directly connected to the
LPC/PCI controller and the Low-speed controller in the FPGAs.

To evaluate the compatibility of the HyperTransport interface,
two different mother boards are designed. The first one is using an
Nvidia chipset as south bridge as shown in Fig.2, the other one is
using AMD chipset, not shown here.

The chipsets in the mother boards are connected to the upper
FPGA through HyperTransport interface. Most of the right half of
two mother boards is occupied by various peripherals of the south
bridge, including PATA socket, SATA sockets, PCI sockets, PCI-E
sockets, VGA port, LPC interface and GMAC interface with a
GMAC PHY chip on board.

3.2. FPGA Daughter Board

The Virtex-5 330 [23] is a Xilinx FPGA with about 330K logic
cells inside. The capacity of this FPGA is the largest before 2009,
but still too small for this design. S2C Dual Virtex-5 330 TAI Logic
Module is designed for rapid SoC/ASIC prototyping. One TAI
Logic Module is equipped with two Virtex-5 330 FPGA (as shown
in Fig.3, called Upper FPGA and Lower FPGA), and has two
DDR2 SO-DIMM sockets for memory extensive applications.
There are 600 wires connecting between the two FPGAs, and many
other pins routed to twelve IO connectors distributed on the
daughter boards.

Figure 2. FPGA platform of Godson-2G

4

Three of the IO connectors are used in this work. The one from
Lower FPGA is used for LPC interfaces; two from the upper FPGA
are used, one for HyperTransport link, the other one for LPC, PCI,
SPI and UART interfaces.

4. PARTITIONING AND SYNTHESIZING
In the whole design flow, partitioning is the most important and

complicated phase; afterward both parts of the partitioned design
are synthesized separately and mapped into two FPGA chips on the
same daughter board. Although EDA vendors has provided
software tools such as Certify [24] to build multi-FPGA based
prototypes of ASIC design in an easy, intuitive fashion, special care
must be taken to avoid an inefficient solution when applying to a
state of art processor like Godson-2G .

An unevenly partitioned design can easily consume 100% of the
I/O resources on a device while at the same time utilizing only a
relatively small amount of its internal logic resources. In the MFP
implementation, we develop a semi-custom design flow. The
partitioning in MFP is manually done to take into consideration the
interaction between components in different FPGAs. Another
purpose of manual partition is to avoid multiplex groups of IOs
together, which may result in a difficult, time-consuming and
cumbersome development cycle.

As for synthesizing, the RTL code of Godson-2G is entirely
written in strictly synthesizable verilog language.

4.1. Partitioning Metrics

With two FPGA chips involved, it is important to partition the
whole design into two parts, synthesize separately and map into
corresponding FPGA. The way to partition is mainly determined
by three facts. The first is resource utilization of each chip, the
second is number of wires left for communication between the two
chips, and the third is the location of IO interface from the mother
board.

Partition may be a complicated work for most multi-FPGA
designs. The worst case is that times of iteration might take place
when a partition can not fit well. To avoid this problem, we do a
semi-custom partition in the view of architecture. We make some
modification to the original architecture of Godson-2G and
partition it into two subsystems. The first one is computing
subsystem with only processor core and LPC controller embedded,

with the purpose to be verified independently in a single FPGA
system by fetching instructions and printing debugging messages
through the LPC interface. The other one is an IO and memory
subsystem including the rest parts of Godson-2G.

The architecture of computing subsystem just looks like the
Lower FPGA in Fig.4. Some tailored application with usage of
only LPC bus such as serial port, LPC flash and nixie tube can be
run on this system. The width of bus used for interconnection
between the two subsystems is no more than 600, making direct
communication between two FPGA possible. Direct
communication proves great convenience for a multi-FPGA design,
as no frequency doubling is needed, causing no frequency
degression.

With full acknowledgement that the Lower FPGA with only the
processor core and PCI/LPC controller embedded works well, the
problem left is just to deal with the upper FPGA, which contains
the IO and memory subsystem.

Considering all reasons mentioned above, architecture of
Godson-2G FPGA is divided into two parts, as shown in Fig.4.
Most of the IO interfaces are mapped into the Upper FPGA, with a
replicate LPC controller integrated in the Lower FPGA marked as
dotted lines in Fig.4, which can be bypassed when the two FPGAs
working together.

PCI

LPC

L2
Cache

Level-1 Xbar

Level-2 Xbar

Config
Registers

Processor
CORE

HT
Controller

LPC
Controller

SouthBridge
I/O Link

Memory
Controller

DDR2/3
SDRAM

Figure 4. Architecture of Godson-2G FPGA

MUX

LPC I/O Link

Lower FPGA

Upper FPGA

Interconnecting
Bus

PCI/LPC
Controller

Low-end I/O
Controller

SPI, UART

The interconnecting bus between two FPGA is the original

processor core interface which contains no more than 600 wires. As
a LPC or PCI access need not to be cached, the replicate LPC
controller can be placed into the Lower FPGA and connected
directly to the processor core as a slave device by a multiplexer
which is enabled when debugging and disabled at normal mode.
Placing the LPC controller into the Lower FPGA can make full
utilization of the IO pins in Lower FPGA and also make the Lower
FPGA can be verified separately and before the whole system
ready but also brings a little difference from the original
architecture of Godson-2G.

Figure 3. Boards of FPGA platform

5

Thus the Lower FPGA contains a basic system which can boot
up the processor core with BIOS codes stored in LPC flash and
interactive through serial port by the LPC bus. The upper FPGA
contains the IO subsystem, including L2 cache, memory controller
and HyperTransport controller and all other interfaces of Godson-
2G.

4.2. Design Flow

The entire design flow for verification and evaluation on Multi-
FPGA platform is shown in Fig.5.

Original source code of Godson-2G is modified for the FPGA

architecture and partitioned into Uint-1 and Unit-2 for the two
pieces of FPGA. Some modules need not be verified in FPGA are
removed, including the test controller, ejtag controller.

FPGA PHYs (SERDES) are used to replace the original ASIC
PHYs in the design, including Hyper-Transport PHY and DDR2/3
PHY, which are hard cores in ASIC design. ASIC RAMs should be
replaced by FPGA RAMs, too.

That is the all modification done to source code. Before
synthesizing, source code of FPGA is first verified using
simulation tools in random verification environment to avoid any
low class bugs that may be injected by the modification.

All pins of the two FPGA are then allocated by their bus
location and corresponding IO standard.

After all these have been done, source codes for Unit-1 and
Unit-2 is then synthesized separately in ISE, a synthesizing tool for
Xilinx FPGA, to generate the binary files for downloading.

A lot of applications including BIOS, Linux and different kinds
of benchmarks are run and debugged on the MFP at the phase of
FPGA emulation.

Resource utilizations of each FPGA are shown in Table 1.

Table 1. Resource utilization of each FPGA
 Upper FPGA Lower FPGA
Logic Utilization
 Slice registers 46% 27%
 Slice LUTs 65% 77%
Logic Distribution
 Occupied slices 79% 88%
IO Utilization
 Bounded IOBs 67% 43%

Block RAM 56% 78%

Utilization from both FPGA synthesizes and ASIC designs are

shown in Table 2. There are some differences in the utilization
between FPGA and ASIC. That many be caused by the different
treatment about RAM and different cells used in FPGA and ASIC.
Each slice of FPGA contains several registers and combining logic;
while each instance of ASIC may be a register, a logic gate or a
hard core, causing difference between the two designs.

Table 2. Resource utilization of FPGA and ASIC

 FPGA slice
number

Percent ASIC instance
number

Percent

Processor core 93182 56% 800171 41%
HyperTransport 22041 13% 427651 22%
DDR2/3 19167 11% 405685 21%
Level-1 Xbar 13907 8% 68222 4%
Level-2 Xbar 8419 5% 56603 3%
Config registers 2102 1% 19987 1%
Level-2 cache 5883 4% 160124 8%

5. EMULATING HIGH-SPEED IO

Godson-2G is a high performance SOC with high-speed
peripherals, including DDR2/3 SDRAM interface and
HyperTransport interface.

One of the targets of Multi-FPGA platform is to verify the
peripheral interfaces and their interactivities with the third-party
chips. That’s why we designed two different mother boards with
different chipsets. The emulation of the DDR2/3 and
HyperTransport PHY is an important step to achieve this goal.
PHY (or SERDES) is a full custom designed hard core embedded
on chip, used for high-speed transmission. The interface frequency
of HyperTransport PHY in Godson-2G is 800MHz and DDR2/3
PHY is 400MHz. As for FPGA prototyping, this part must be re-
implemented especially to emulate the function of the hard core in
physical design.

The FPGA PHY of HyperTransport targets at 200 MHz and the
DDR2/3 PHY targets at 40 MHz.

The main function of PHY is to convert between a set of parallel
signals and a serial DDR (Double Data Rate) signal for on-board
transmission. Driver of PHY is used to transform the internal
parallel signals to external serial signal. Receiver of PHY is used to
transform the external serial signal to internal parallel signals.

Another function is clock phase adjustment. Both output clock
of driver and input clock of receiver might need to be adjusted
according to the protocol.

5.1. HyperTransport Interface

The link frequency of HyperTransport PHY must be at least
200MHz due to HyperTransport specification. So that the
corresponding control logic should run at 100MHz to communicate
with south bridge.

As For the HyperTransport interface, ratio of parallel data to its
corresponding serial signal is 4:1. For example, the waveform of
driver signals is shown in Fig.6. The four parallel data from the
control logic named PHY_Dn (n = 0...3) are driven by the clock
named PHY_clk which is running at 100MHz. They are serialized
to generate the link signal HT_cad. Clock frequency is doubled and
clock phase is postponed according to the protocol requirement.
For the receiver part of PHY, it just reverses the course to de-

6

serialize the four PHY_Dn data from the external HT_cad and
restores the half-frequency clock from the HT_clk.

With the implementation of FPGA PHY, frequency of
HyperTransport interface is 200 MHz after system cold reset, with
a link width of 8 bits. A set of asynchronous FIFO is placed
between PHY and controller to transmit the data between 100 MHz
clock domain of PHY and 25 MHz clock domain of the controller.

Placement of PHY can be viewed in the architecture of
HyperTransport interface in Fig.7. The Tx control logic and the Rx
control logic are running at 100 MHz, while the HT controller is
running at 25 MHz with three sets of asynchronous FIFOs between
them.

5.2. DDR2/3 Interface

Frequency requirement of DDR link is not as restrict as
HyperTransport link. Thus the DDR2/3 PHY can also run at 40
MHz as DDR2/3 controller in the same clock domain.

The signal processing method of the DDR2/3 PHY is similar to
HyperTransport PHY. Both them are double data rate compared to
clock frequency.

In order to centralize the DDR_dqs signal to the DDR_dq

signals in a memory write access, two clocks are introduced into
DDR2/3 PHY, as shown in Fig.8, marked as CLK_dqs and
CLK_data. The latency from CLK_dqs which is responding for
DDR_dqs to CLK_data which is responding for DDR_dq is one-
forth clock phase.

For read dqs and read data, the DDR2/3 PHY is also responding
for centralizing the positive edge of DDR_dqs to the DDR_dq
signals, de-serializing and synchronizing the data to memory
controller clock domain.

As there is no phase separation between read dqs and read data,
read dqs must be delayed one-forth clock phase to sample and de-
serialize the read data. Thus a set of delay line logic is placed into
the DDR2/3 PHY for each read dqs.

6. INTEGRATION AND DEBUGGING

In MPF validation, the processor is tested in a system setting.
Validation in this setting concentrates not only on the processor,
but also interaction with chipset, memory system, and other
peripherals.

6.1. System Environment

The configuration of processor core and peripherals are shown
in Table 3. The caches are chopped to 512KB from 1MB of ASIC
design to fit the capacity of FPGA.

Table 3. FPGA Configuration of Processor
 Characters Frequency
Processor core 4 issues

Out of order
64KB I-cache
64KB D-cache

25MHz

L2 cache 512 KB 25MHz
Memory controller 64 bit DDR2

1GB
40MHz

HyperTransport
controller

 25MHz

HyperTransport
Bus

8 bit width /
16 bit width

200MHz

PCI/LPC controller 33MHz
L1/L2 Xbar 128 bit width 25MHz
Peripheral devices 10M/100M NIC on PCI

GMAC on South bridge
PATA on South bridge
Flash, PS/2 on LPC
Serial port on LPC
UART port, SPI flash

7

6.2. Software Stack
PMON will be first booted up on the Multi-FPGA platform after

system reset. It will first initialize the processor core, caches, and
then the memory controller. After that, it will initialize the
HyperTransport interface and the devices on south bridge.

After everything is initialized, a network card on the PCI bus of
south bridge is activated. Linux kernel is downloaded by the
Ethernet link from a tftp sever.

When Linux is running, many other devices on south bridge are
set up to work, including the IDE hard disk, GMAC Ethernet
controller, and etc.

Many things can be done on Linux operating system. A lot of
benchmarks are tested, including SPEC CPU 2000, LMbench, ftp
downloading, stream test, and etc.

Some of the testing results are given in the following section.

6.3. Debugging
The best place to debug a processor bug is in the simulation

environment, where all signals are available for scrutiny.
Unfortunately, in the system environment of real system almost no
internal signals are visible to the system debugger. A suite of tools
was developed for use in the Pentium processor [25], using both
architectural and micro-architectural features of the processor.

FPGA platform is also hard to debug when any abnormality
emerges, as signals inside are difficult to probe. But bugs are not
occasional at the very beginning. Thus the way to debug must be
under consideration.

Some observing points are injected into the DMA path from
HyperTransport controller to the memory controller for checking
where a data corruption has happened.

Each observing point is a monitor that can be triggered by a
software programmable pattern. All of the monitors are chained
together in a daisy-chain topology by two sets of buses called
configure bus and configure return, which are controlled by the
configuration registers module as Fig.9.

L2
Cache

Level-1 Xbar

Level-2 Xbar

Config
Registers

HT
Controller

SouthBridge
I/O Link

Memory
Controller

DDR2/3
SDRAM

Upper FPGA

Interconnecting
Bus

Monitor0

Monitor1

M
on

ito
r2

Figure 9. Injection of Monitors

The configure bus transmits the read or write command with
address and write data, while configure return contains the
response from the selected monitor. Software can access the
monitors by accessing the configuration registers module.

With the help of injected monitors, it is easy to tell where the
problem may be.

We once encountered a problem which causes data downloaded
by the Ethernet through the HyperTransport link sometimes

incorrect in the memory. As the location in memory is not random,
triggers are set in the monitors to locate where the data is corrupted.
Three monitors are injected between the HyperTransport PHY and
controller, HyperTransport controller and Level-1 Xbar, memory
controller and Level-2 Xbar just as shown in Fig.9. After compared
data from the three monitors, a mismatch was found between the
FPGA RAM and ASIC RAM. At last the problem is resolved by
replacing the FPGA RAM with register files.

7. PERFORMANCE EVALUATION

Another goal of the MFP is to evaluate the system performance
compared to the real system, but the clock frequency of memory
controller is too fast compared to the one of processor core,
causing the delay of memory access from the processor too short
compared to a real system. To emulate the memory access delay as
accurate as possible, a set of FIFO is introduced into the memory
access path.

As a memory access delay in the DDR clock domain is about
30-35 clock cycles, about 70 cycles should be injected into the
clock domain of process core to emulate the real memory access
delay from the process core in the Multi-FPGA platform.

The impact of different memory access delay can be viewed in
Fig. 10, 11 and 12. Four kind of delay are injected into the memory
accessing path, including 0, 60 cycles, 70 cycles and 80 cycles.

Figure 10. Bandwidth in different test (unit: MB/s)

The results of testing hdparm, copy and network download are

shown in Fig.10. The results of train scale SpecCPU 2000 are
shown in Fig.11 and Fig.12. It is obvious that the few cycles
injected, the higher the performance is achieved in most of the
cases.

Figure 11. Execution time of Spec2000 INT (unit: Sec)

8

Figure 12. Execution time of Spec2000 FP (unit: Sec)

For some benchmarks in SpecCPU 2000, performance is slightly

influenced by the increased delay of memory access, such as gzip,
gcc, crafty, eon. That may be caused by the low miss rate in L2
cache, which alleviate the impact of increasing memory access
delay.

8. CONCLUSION

As mentioned before, software simulation is time costing and
impracticable for verifying and evaluating a state of art micro-
processor such as Godson-2G. With shortcoming that the peripheral
interfaces are hard to be verified in the hardware-based emulation,
Multi-FPGA platform is developed for verification and evaluation
of Godson-2G.

In this work we provide:

1) Although the current FPGA technology cannot accommodate
a big design into one single device, the multi-FPGA based
solution is a viable approach to emulating such a tightly-
couple design as modern processors.

2) Even high-speed peripherals like HyperTransport and can be
prototyped using carefully tuned FPGA.

3) Compared to post-silicon debugging, locating bugs and
performance bottleneck is relatively easy by instruct a
monitoring segments into the raw design.

The multi-FPGA based emulation system serves as a powerful
environment for both architectural exploration and functional
verification. Its capability to quickly model architectural
modifications and accurately predict their performance effect to
facilitate systems to chips innovations.

9. ACKNOWLEDGEMENT

Reference

[1] HyperTransport Technology Consortium. HyperTransport I/O
Link Specification Revision 1.03. 2001.
[2] HyperTransport Technology Consortium. HyperTransport I/O
Link Specification Revision 3.00a. 2006.
[3] Chetana N. Keltcher, Kevin J. McGrath, Ardsher Ahmed and
Pat Conway. “The AMD Opteron Processor For Multprocessor
Servers”. IEEE Micro, No.2, 2003.
[4] Intel Corporation. “Intel Xeon Processor 7400 Series
Datasheet”. October 2008.

[5] Cadence Design Systems. “Xtreme server”. 2005.
DOI=http://www.cadence.co.in/products/functionalver/xtremeserv
er/index.aspx
[6] Helena Krupnova and Gabriele Saucier. FPGA-based
Emulation: Industrial and Custom Prototyping Solutions. In
Proceedings of International Conference of Field-Programmable
Logic Applications. August 2000, pp. 68-77.
[7] Cadence Design Systems. “Palladium accelerator/emulator”.
2003.
DOI=http://www.cadence.com/products/functionalver/palladium/in
dex.aspx.
[8] Ateshian, Peter and Zulaica, Daniel. “ARM Synthesizable
Design with Actel FPGAs: with Mixed-Signal SoC Applications
(set 3)”. 2010.
[9] Nathaniel Pinckney, Thomas Barr, Michael Dayringer,
Matthew McKnett, Nan Jiang, Carl Nygaard, David Money Harris,
Joel Stanley and Braden Phillips. A MIPS R2000 Implementation,
DAC 2008 pp. 102-107.
[10]Zhangxi Tan, Krste Asanovic and David Patterson. An FPGA
Host-Multithreaded Functional Model for SPARC v8. In
Proceedings of the 3rd Workshop on Architectural Research
Prototyping. 2008.
[11]Roland E. Wunderlich and James C. Hoe. In-system FPGA
Prototyping of An Itanium Microarchitecture. ICCD 2004: In
Proceedings. IEEE International Conference on Computer Design:
VLSI in Computers and Processors. 2004, pp. 288-294.
[12]Rod Blaine Foist, Cristian Sorin Grecu, André Ivanov and
Robin F. B. Turner. “An FPGA Design Project: Creating a
PowerPC Subsystem Plus User Logic”. IEEE Transactions on
Education, Volume 51, Issue 3, Aug. 2008, pp. 312–318.
[13]Shih-Lien L. Lu, Peter Yiannacouras, Rolf Kassa, Michael
Konow and Taeweon Suh. An FPGA-based Pentium® in a
complete desktop system. In Proceedings of the 2007 ACM/
SIGDA 15th international symposium on Field programmable gate
arrays. 2007, pp. 53-59.
[14]Perry H. Wang, Jamison D. Collins, Chris T. Weaver,
Belliappa Kuttanna, Shahram Salamian, Gautham N. Chinya,
Ethan Schuchman, Oliver Schilling, Thorsten Doil, Sebastian
Steibl and Hong Wang. Intel® atom™ Processor Core Made
FPGA-Synthesizable. FPGA '09: In Proceeding of the
ACM/SIGDA international symposium on Field programmable
gate arrays. 2009, pp. 209-218.
[15]John Wawrzynek, David Patterson, Mark Oskin, Shih-Lien Lu,
Christoforos Kozyrakis, James C. Hoe, Derek Chiou and Krste
Asanovic. “RAMP: Research Accelerator for Multiple Processors”.
IEEE Micro, Vol.27, No.2, 2007.
[16]Weiwu Hu, Fuxin Zhang and Zusong Li. “Microarchitecture of
the Goodson-2 Processor”. Journal of Computer Science and
Technology. 2005, 20(2):243-249.
[17]Weiwu Hu, Jian Wang, Xiang Gao, Yunji Chen, Qi Liu and
Guojie Li. “Godson-3: A Scalable Multicore RISC Processor with
x86 Emulation”. IEEE Micro, Vol.29, No.2, 2009.
[18]Weiwu Hu, Jiye Zhao, Shiqiang Zhong, Xu Yang, E. Guidetti
and Christ Wu. “Implementing a 1GHz Four-issue Out-of-Order
Execution Microprocessor in a Standard Cell ASIC Methodology”.
Journal of Computer Science and Technology. 2007,22(1),1-14.
[19]MIPS technology. MIPS64® Architecture For Programmers
Volume I: Introduction to the MIPS64® Architecture. 2008.
[20]ARM®. AMBA® AXI Protocol v1.0 Specification. 2004.
[21]Huandong Wang, Dan Tang, Xiang Gao and Yunji Chen. An
Enhanced HyperTransport Controller with Cache Coherence
Support for Multiple-CMP. NAS 2009. In Proceeding of IEEE

9

International Conference on Networking, Architecture, and Storage.
2009, pp. 215-218.
[22]Weiwu Hu, Weisong Shi and Zhimin Tang. JIAJIA: An SVM
System Based on a New Cache Coherence Protocol. In Proceeding
of HPCN’99, 1999, pp. 463-472.
[23]Xilinx. “Virtex-5 Multi-Platform FPGAs”.
DOI=http://www.xilinx.com/products/virtex5/

[24]Synplicity Inc. “Certify”.
DOI=http://www.synplicity.com/products/certify/
[25]Adrian Carbine and Derek Feltham. “Pentium Pro processor
design for test and debug”. IEEE Design & Test of Computers.
Vol.15, No.3, 1998, pp. 77–82.

1

ABSTRACT
Software simulation has become a powerful method in

development of processors, but to simulate processors with a state
of art architecture has become extremely difficult. The simulation
of this kind of the processors is time-costing as the scale becomes
larger and larger complied with the Moore’s low. Accompanied
with the enlargement of scale, many high-speed IOs are integrated
into processors as SOC chips, causing another problem that the
verification of high speed IOs is very limited for software
simulation. With the help of FPGA based platform, the verification
and evaluation of processors can be done in a relative high speed.
The FPGA based platform also provides a real environment with a
lot of real chips working together for the verification of high speed
IOs. In this work, a multi-FPGA based platform used for
verification and evaluation of Godson-2G processor is introduced.
Tactics for a semi-custom partitioning and the design flow are
discussed. Method to emulate DDR and HyperTransport PHYs is
offered after that. Instrumentation based debugging and the
performance evaluations are both presented at the end of this paper.

Categories and Subject Descriptors
C.1.0 [Processor Architectures]: General

General Terms
Design, Verification, Performance

Keywords
Godson-2G, Multi-FPGA, emulate, verification, evaluation

1. INTRODUCTION

Today’s general-purpose processors have been evolving towards
having more functional peripherals on-chip to provide higher
performance and better cost-effective solutions. AMD has been
using on-chip memory controller and HyperTransport [1] [2] links
for years in its Athlon64 and Opteron [3] processors. Intel’s latest

Nehalem [4] processor family also departs from the traditional
front side bus and integrates the memory controller into the CPU.
Furthermore, other system components such as PCI-E, GPU,
finding their positions in general-purpose processors has been a
matter of “when”, rather than “if”.

With the unprecedented level of chip integration leading to
much more design and verification efforts, processor designers are
facing great challenges. More peripheral components added into
the chip expand the already huge design space. Interactions
between components get much more complicated. System-level
evaluation and decision-making are suffocated by the slow
simulation speeds. Meanwhile, the lack of detailed and ample
peripheral modeling in the RTL-level simulation environments
brings high risk into the pre-silicon verification.

To address challenges from design exploration and pre-silicon
verification, more and more processor designer resort to FPGA-
based prototype. As widely-deployed platforms in the area of SoCs
and ASICs, the flexibility, speed, and enormous capacity qualifies
them for the emulation of large and complex systems.
Nevertheless, a typical state of art processor always exceeds the
capacity of the largest modern FPGA device. The largest FPGAs
before 2009 in production have an estimated equivalent capacity of
about 1.5 million gates or 30 million transistors. Prototyping a
modern processor larger than this means spreading the
functionality across multiple FPGAs. It is a complicated task, but
one that is well worth the effort.

This paper presents a multi-FPGA based platform (called MFP)
which prototype the Godson-2G (also known as Loongson-2G), a
modern superscalar processor with transistor number exceeding
100M .To the best of our knowledge, the MFP is the first platform
capable of emulating a state of art processors across multi-FPGA.
Taking into account the trend toward ever-increasing levels of
processor integration, we view Multi-FPGA as inevitable in the
long term for the pre-silicon functional verification and
architectural evaluation. It’s also a very promising and
straightforward step to emulate huge ASICs/SOCs chips.

In the MFP system, different kinds of I/O peripheral are working
together. The emulated processor core can run at up to 25 MHz. As
well, the integrated DDR2/3 controller can work at 40 MHz and
HyperTransport controller at 25 MHz. At such speeds, it is
sufficient to boot unmodified operating system, enabling processor
designer to carry out a diverse variety of architectural explorations.
Time-consuming benchmarks, including both computing-intensive
and IO-intensive applications, can be completely and fast evaluated.
For example, the entire SPEC CPU 2K benchmark in train scale
can be completed within twelve hours, in contrast to about a week
by the Xtreme emulation [5], resulting in a significant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

A Multi-FPGA Based Platform for emulating a 100M-transistor-scale
Processor with High-speed Peripherals

Weiwu Hu1, Huandong Wang1,2, Xiang Gao1, Yunji Chen1, Dan Tang1,2
1Key Laboratory of Computer System and Architecture, Institute of Computing Technology, Chinese Academy

of Sciences, Beijing 100190, China
2Graduate University of Chinese Academy of Sciences, Beijing 100049, China

{hww, wanghuandong, gaoxiang, cyj, tangdan, }@ict.ac.cn

2

improvement into the pre-silicon performance prediction.

The key contributions of the work include:

 We analyze a 100M-transistor-scale superscalar processor
implementation on two virtex-5 FPGAs. Methodology to
partition, synthesis, and map an almost-unmodified RTL
design to a multi-FGPA target are detailed.

 We present the experiences under FPGA environment to
emulate the high-speed I/O peripherals, including Hyper-
Transport and DDR2/3.

 System-level Debugging, we share our methods and
experience in tackling the problem at system-level
developing.

 Preliminary evaluation of pre-silicon performance, including
computing-intensive and I/O-intensive bench-marks
validation is presented.

The remaining sections of this paper are organized as following.
Section 2 summarizes related work and introduces the architecture
of Godson-2G micro-processor. Section 3 describes the multiple
FPGA platform used in this work. Section 4 discusses the semi-
custom partitioning and design flow. Section 5 presents the method
to emulate the high speed IO. Section 6 details a debugging method
in FPGA and Section 7 gives some evaluation results.

2. BACKGROUND

As the scale of chip design increasing rapidly, it is difficult to
evaluate a design only by software simulation. Although the
emergency of multi-FPGA based [6] or hardware based emulation
accelerator greatly speeds up simulation or emulation, IO behaviors
and different IO specifications are still hard to verify. While the
capability of a single FPGA platform is too small for emulating a
100M-transistor-scale processor, a multi-FPGA based platform is
one of the best way to verify and evaluate the design of Godson-2G
micro-processor.

2.1. Related Work

The three main options for evaluation and verification open to
processor designers are simulation, emulation, and FPGA-based
prototypes. The ever-increasing chip scale makes the software
simulation notoriously slow to simulate an entire chip at RTL-
accurate level. The fastest true RTL-accurate simulators of modern
processors run at about 1 KHz to 10 KHz, which means two
minutes of simulated time in approximately corresponding to one
to ten years of simulation time. At such speeds, it is impractical to
use realistic program to explore, evaluate and refine micro-
architectures.

Hardware-based emulation is another reasonably popular
technique, which can be viewed as a kind of accelerated and board-
pluggable simulation. Several companies such as
Cadence/(Xtreme,Palladium [7]), Mentor, Synopsys, EVE and
Tharas sell FPGA-based accelerators, emulators or tools that take
arbitrary RTL and map it to hardware to improve simulation
performance. The emulators tend to be very expensive due to their
complexity. With an equivalent speed of only 500 KHz to around
2MHz, however, it's still two to three orders slower than the real
chip. As peripheral I/O devices in the emulation system are
working at their real speed, the extreme speed imbalance between
I/O peripheral and the emulated processor will introduce many odd
obstacles to system-level evaluations. Taking the TCP/IP
connection as an example, low frequency of the processor lead to

unexpected packet losses and connection termination. Besides, I/O
Bus adhere to the emulated processor should also work at a much
lower speed than the sane frequency, causing I/O devices on the
bus behave abnormally.

For almost all mainstream architectures, there have been FPGA-
synthesizable processor designs, including ARM [8], MIPS [9],
SPARC [10], Itanium [11], and PowerPC [12]. Lu et al. [13]
previously presented an FPGA-synthesizable version of Intel’s
vintage Pentium processor. Another notable work was the Intel
Atom prototyping reported in [14], which for the first time
disclosed Intel’s effort to implement an FPGA-synthesizable
version of a modern x86 processor.

But the modern processor can accommodate only a fraction of
the whole processor chip, making system-level validation still a
dilemma.

Fortunately, Moore's law has not only enabled these dense
multi-core chips, it has also enabled extremely dense FPGAs.

Compared with powerful modern processor, processor cores
mentioned above are relatively simple and small. Even the biggest
one of them, namely Atom, consumes a total of 47.2 million
transistors, allowing the whole design being mapped into a single
FPGA. Contrary to these approaches, we implement the whole
processor chip into multiple FPGAs, which removes the chip-size
limitation caused by the bounded capacity of a single FPGA device.
Furthermore, on-chip peripheral interfaces are also integrated,
making the system-level validation feasible and reliable.

The RAMP collaboration [15] is building the necessary
infrastructure to compose systems of up to 1024 processors. It is
targeted at facilitating software research in many-core era. The
processor cores adopted by RAMP are simple in complexity and
small in size. One to two dozen cores can be programmed into a
single FPGA. However, it lacks the ability to validate a state of art
commodity processor that exceeds the capacity of a single FPGA.

2.2. The Godson-2G Processor

The Godson project, which was initiated by ICT-CAS in 2001,
was the first attempt to develop high performance general purpose
processors in China [16]. Godson-2G, the latest member of Godson
processors supposed to tape out in 2009, is the single core version
of Godson-3 [17]. The chip measures 53.90 mm2 in size and
consumes 106.8 million transistors. The estimated peak frequency
is up to 1GHz and the power dissipation is 5-7 Watt depending on
applications.

The architecture of Godson-2G is shown in Fig.1. The chip is
based on two crossbars with 128-bit width data buses. The
Crossbar with 2x2 ports called Level-1 Xbar connects the
processor core, L2 Cache and HyperTransport controller. The other
one with 2x3 ports called Level-2 Xbar slots in between L2 Caches,
DDR2/3 controllers and PCI/LPC interface.

The processor core of Godson-2G (named GS464) implements
MIPS64 instruction set [18] in a four-issue, out-of-order execution
way [19]. It fetches and decodes four instructions per cycle and
dynamically issues them to five fully pipelined functional units
(two fix-point, two floating-point and one memory access unit).
Instructions are issued out of order by two 16-entry reservation
stations and are committed in program order by a 64-entry reorder
queue. Two 64-entry physical register files are used for register
renaming of the general purpose and floating point registers
separately. An 8192-entry pattern history table, a 9-bit global
history register, a 16-entry branch target buffer and a 4-entry return
address stack keep the branch history information for prediction.
GS464 has a 64KB instruction cache and a 64KB data cache. A 24-

3

entry memory access queue that contains a content-addressable
memory for dynamic memory disambiguation supports out-of-
order memory access and non-blocking cache in GS464.

The Godson-2G supports a broad range of IO interfaces. These
peripherals can be classified into two categories: the high speed IO
and the low speed IO. High-speed IO controllers are critical for
efficient executions of throughput based workloads, while low
speed IO controllers provide flexibility to form a functionally
complete system. The current version of Godson-2G encompasses
one high-speed HyperTransport controller. The low speed IO
interfaces in Godson-2G include PCI/LPC controller, UART
controller, SPI controller and GPIO controller.

The two crossbars inside the Godson-2G processor are running

different protocol. A cache coherence supported AXI protocol [20]
is running on the Level-1 Xbar, while a standard AXI protocol is
running on the Level-2 Xbar. Devices with requirement of cache
coherence are placed onto the level-1 crossbar, such as L2 cache
and Hyper-Transport controller. As the HyperTransport controller
is placed on the Level-1 Xbar, cache coherence protocol between
the native cache and IO device or remote cache in the other
processors connected by the HyperTransport bus can be simply
maintained. [21]

The low speed devices without cache coherence requirement are
placed onto the level-2 crossbar, such as PCI/LPC controller,
DDR2/3 SDRAM controller, UART controller, SPI controller, and
GPIO controller. Without cache coherence protocol supported,
software method can be used to maintain the coherence with
caches. [22]

3. STRUCTURE OF THE PLATFORM

As a high performance SOC chip, pre-silicon validation in the
FPGA platform of Godson-2G raise compelling requirements,
including:

 Completeness. The capacity of the platform should be big

enough to accommodate the whole chip design.
 Flexibility. The platform should be flexible for evaluating

different kinds of application, including benchmarks for
computing power and IO performance, running different kinds
of peripheral devices.

 Applicability. Fast and accurate performance prediction for
both IO-intensive and computing-intensive application.

To address these requirements and challenges, we propose a
two-board solution to spread system functionality across two
boards. The resulting MFP platform is constructed by a mother

board and an FPGA daughter board. The mother board contains all
necessary building peripheral chips and device slots, while the
FPGA daughter board hosts the whole Godson-2G. To ease
hardware platform setup, S2C’s Dual Virtex-5 TAI Logic Module
board is used as the FPGA daughter board. Two boards are erected
together through high-speed PCB-to-PCB connectors. The photo of
the Godson-2G MFP platform is shown in Fig. 2. The FPGA
daughter board is placed above the mother board in the left.

3.1. Mother Board

The mother board contains the LPC interface part, the PCI
interface part, SPI flash, UART ports and the south bridge part.
LPC interface is connected to a LPC flash which stores the CPU
booting codes, a nixie tube as debugging display and a super IO
chip. The super IO chip is used for the function of serial port, PS/2
ports for keyboard and mouse. The PCI interface is led to two
standard 32-bit PCI sockets. The LPC, SPI, UART and PCI
interfaces on the mother board are directly connected to the
LPC/PCI controller and the Low-speed controller in the FPGAs.

To evaluate the compatibility of the HyperTransport interface,
two different mother boards are designed. The first one is using an
Nvidia chipset as south bridge as shown in Fig.2, the other one is
using AMD chipset, not shown here.

The chipsets in the mother boards are connected to the upper
FPGA through HyperTransport interface. Most of the right half of
two mother boards is occupied by various peripherals of the south
bridge, including PATA socket, SATA sockets, PCI sockets, PCI-E
sockets, VGA port, LPC interface and GMAC interface with a
GMAC PHY chip on board.

3.2. FPGA Daughter Board

The Virtex-5 330 [23] is a Xilinx FPGA with about 330K logic
cells inside. The capacity of this FPGA is the largest before 2009,
but still too small for this design. S2C Dual Virtex-5 330 TAI Logic
Module is designed for rapid SoC/ASIC prototyping. One TAI
Logic Module is equipped with two Virtex-5 330 FPGA (as shown
in Fig.3, called Upper FPGA and Lower FPGA), and has two
DDR2 SO-DIMM sockets for memory extensive applications.
There are 600 wires connecting between the two FPGAs, and many
other pins routed to twelve IO connectors distributed on the
daughter boards.

Figure 2. FPGA platform of Godson-2G

4

Three of the IO connectors are used in this work. The one from
Lower FPGA is used for LPC interfaces; two from the upper FPGA
are used, one for HyperTransport link, the other one for LPC, PCI,
SPI and UART interfaces.

4. PARTITIONING AND SYNTHESIZING
In the whole design flow, partitioning is the most important and

complicated phase; afterward both parts of the partitioned design
are synthesized separately and mapped into two FPGA chips on the
same daughter board. Although EDA vendors has provided
software tools such as Certify [24] to build multi-FPGA based
prototypes of ASIC design in an easy, intuitive fashion, special care
must be taken to avoid an inefficient solution when applying to a
state of art processor like Godson-2G .

An unevenly partitioned design can easily consume 100% of the
I/O resources on a device while at the same time utilizing only a
relatively small amount of its internal logic resources. In the MFP
implementation, we develop a semi-custom design flow. The
partitioning in MFP is manually done to take into consideration the
interaction between components in different FPGAs. Another
purpose of manual partition is to avoid multiplex groups of IOs
together, which may result in a difficult, time-consuming and
cumbersome development cycle.

As for synthesizing, the RTL code of Godson-2G is entirely
written in strictly synthesizable verilog language.

4.1. Partitioning Metrics

With two FPGA chips involved, it is important to partition the
whole design into two parts, synthesize separately and map into
corresponding FPGA. The way to partition is mainly determined
by three facts. The first is resource utilization of each chip, the
second is number of wires left for communication between the two
chips, and the third is the location of IO interface from the mother
board.

Partition may be a complicated work for most multi-FPGA
designs. The worst case is that times of iteration might take place
when a partition can not fit well. To avoid this problem, we do a
semi-custom partition in the view of architecture. We make some
modification to the original architecture of Godson-2G and
partition it into two subsystems. The first one is computing
subsystem with only processor core and LPC controller embedded,

with the purpose to be verified independently in a single FPGA
system by fetching instructions and printing debugging messages
through the LPC interface. The other one is an IO and memory
subsystem including the rest parts of Godson-2G.

The architecture of computing subsystem just looks like the
Lower FPGA in Fig.4. Some tailored application with usage of
only LPC bus such as serial port, LPC flash and nixie tube can be
run on this system. The width of bus used for interconnection
between the two subsystems is no more than 600, making direct
communication between two FPGA possible. Direct
communication proves great convenience for a multi-FPGA design,
as no frequency doubling is needed, causing no frequency
degression.

With full acknowledgement that the Lower FPGA with only the
processor core and PCI/LPC controller embedded works well, the
problem left is just to deal with the upper FPGA, which contains
the IO and memory subsystem.

Considering all reasons mentioned above, architecture of
Godson-2G FPGA is divided into two parts, as shown in Fig.4.
Most of the IO interfaces are mapped into the Upper FPGA, with a
replicate LPC controller integrated in the Lower FPGA marked as
dotted lines in Fig.4, which can be bypassed when the two FPGAs
working together.

PCI

LPC

L2
Cache

Level-1 Xbar

Level-2 Xbar

Config
Registers

Processor
CORE

HT
Controller

LPC
Controller

SouthBridge
I/O Link

Memory
Controller

DDR2/3
SDRAM

Figure 4. Architecture of Godson-2G FPGA

MUX

LPC I/O Link

Lower FPGA

Upper FPGA

Interconnecting
Bus

PCI/LPC
Controller

Low-end I/O
Controller

SPI, UART

The interconnecting bus between two FPGA is the original

processor core interface which contains no more than 600 wires. As
a LPC or PCI access need not to be cached, the replicate LPC
controller can be placed into the Lower FPGA and connected
directly to the processor core as a slave device by a multiplexer
which is enabled when debugging and disabled at normal mode.
Placing the LPC controller into the Lower FPGA can make full
utilization of the IO pins in Lower FPGA and also make the Lower
FPGA can be verified separately and before the whole system
ready but also brings a little difference from the original
architecture of Godson-2G.

Figure 3. Boards of FPGA platform

5

Thus the Lower FPGA contains a basic system which can boot
up the processor core with BIOS codes stored in LPC flash and
interactive through serial port by the LPC bus. The upper FPGA
contains the IO subsystem, including L2 cache, memory controller
and HyperTransport controller and all other interfaces of Godson-
2G.

4.2. Design Flow

The entire design flow for verification and evaluation on Multi-
FPGA platform is shown in Fig.5.

Original source code of Godson-2G is modified for the FPGA

architecture and partitioned into Uint-1 and Unit-2 for the two
pieces of FPGA. Some modules need not be verified in FPGA are
removed, including the test controller, ejtag controller.

FPGA PHYs (SERDES) are used to replace the original ASIC
PHYs in the design, including Hyper-Transport PHY and DDR2/3
PHY, which are hard cores in ASIC design. ASIC RAMs should be
replaced by FPGA RAMs, too.

That is the all modification done to source code. Before
synthesizing, source code of FPGA is first verified using
simulation tools in random verification environment to avoid any
low class bugs that may be injected by the modification.

All pins of the two FPGA are then allocated by their bus
location and corresponding IO standard.

After all these have been done, source codes for Unit-1 and
Unit-2 is then synthesized separately in ISE, a synthesizing tool for
Xilinx FPGA, to generate the binary files for downloading.

A lot of applications including BIOS, Linux and different kinds
of benchmarks are run and debugged on the MFP at the phase of
FPGA emulation.

Resource utilizations of each FPGA are shown in Table 1.

Table 1. Resource utilization of each FPGA
 Upper FPGA Lower FPGA
Logic Utilization
 Slice registers 46% 27%
 Slice LUTs 65% 77%
Logic Distribution
 Occupied slices 79% 88%
IO Utilization
 Bounded IOBs 67% 43%

Block RAM 56% 78%

Utilization from both FPGA synthesizes and ASIC designs are

shown in Table 2. There are some differences in the utilization
between FPGA and ASIC. That many be caused by the different
treatment about RAM and different cells used in FPGA and ASIC.
Each slice of FPGA contains several registers and combining logic;
while each instance of ASIC may be a register, a logic gate or a
hard core, causing difference between the two designs.

Table 2. Resource utilization of FPGA and ASIC

 FPGA slice
number

Percent ASIC instance
number

Percent

Processor core 93182 56% 800171 41%
HyperTransport 22041 13% 427651 22%
DDR2/3 19167 11% 405685 21%
Level-1 Xbar 13907 8% 68222 4%
Level-2 Xbar 8419 5% 56603 3%
Config registers 2102 1% 19987 1%
Level-2 cache 5883 4% 160124 8%

5. EMULATING HIGH-SPEED IO

Godson-2G is a high performance SOC with high-speed
peripherals, including DDR2/3 SDRAM interface and
HyperTransport interface.

One of the targets of Multi-FPGA platform is to verify the
peripheral interfaces and their interactivities with the third-party
chips. That’s why we designed two different mother boards with
different chipsets. The emulation of the DDR2/3 and
HyperTransport PHY is an important step to achieve this goal.
PHY (or SERDES) is a full custom designed hard core embedded
on chip, used for high-speed transmission. The interface frequency
of HyperTransport PHY in Godson-2G is 800MHz and DDR2/3
PHY is 400MHz. As for FPGA prototyping, this part must be re-
implemented especially to emulate the function of the hard core in
physical design.

The FPGA PHY of HyperTransport targets at 200 MHz and the
DDR2/3 PHY targets at 40 MHz.

The main function of PHY is to convert between a set of parallel
signals and a serial DDR (Double Data Rate) signal for on-board
transmission. Driver of PHY is used to transform the internal
parallel signals to external serial signal. Receiver of PHY is used to
transform the external serial signal to internal parallel signals.

Another function is clock phase adjustment. Both output clock
of driver and input clock of receiver might need to be adjusted
according to the protocol.

5.1. HyperTransport Interface

The link frequency of HyperTransport PHY must be at least
200MHz due to HyperTransport specification. So that the
corresponding control logic should run at 100MHz to communicate
with south bridge.

As For the HyperTransport interface, ratio of parallel data to its
corresponding serial signal is 4:1. For example, the waveform of
driver signals is shown in Fig.6. The four parallel data from the
control logic named PHY_Dn (n = 0...3) are driven by the clock
named PHY_clk which is running at 100MHz. They are serialized
to generate the link signal HT_cad. Clock frequency is doubled and
clock phase is postponed according to the protocol requirement.
For the receiver part of PHY, it just reverses the course to de-

6

serialize the four PHY_Dn data from the external HT_cad and
restores the half-frequency clock from the HT_clk.

With the implementation of FPGA PHY, frequency of
HyperTransport interface is 200 MHz after system cold reset, with
a link width of 8 bits. A set of asynchronous FIFO is placed
between PHY and controller to transmit the data between 100 MHz
clock domain of PHY and 25 MHz clock domain of the controller.

Placement of PHY can be viewed in the architecture of
HyperTransport interface in Fig.7. The Tx control logic and the Rx
control logic are running at 100 MHz, while the HT controller is
running at 25 MHz with three sets of asynchronous FIFOs between
them.

5.2. DDR2/3 Interface

Frequency requirement of DDR link is not as restrict as
HyperTransport link. Thus the DDR2/3 PHY can also run at 40
MHz as DDR2/3 controller in the same clock domain.

The signal processing method of the DDR2/3 PHY is similar to
HyperTransport PHY. Both them are double data rate compared to
clock frequency.

In order to centralize the DDR_dqs signal to the DDR_dq

signals in a memory write access, two clocks are introduced into
DDR2/3 PHY, as shown in Fig.8, marked as CLK_dqs and
CLK_data. The latency from CLK_dqs which is responding for
DDR_dqs to CLK_data which is responding for DDR_dq is one-
forth clock phase.

For read dqs and read data, the DDR2/3 PHY is also responding
for centralizing the positive edge of DDR_dqs to the DDR_dq
signals, de-serializing and synchronizing the data to memory
controller clock domain.

As there is no phase separation between read dqs and read data,
read dqs must be delayed one-forth clock phase to sample and de-
serialize the read data. Thus a set of delay line logic is placed into
the DDR2/3 PHY for each read dqs.

6. INTEGRATION AND DEBUGGING

In MPF validation, the processor is tested in a system setting.
Validation in this setting concentrates not only on the processor,
but also interaction with chipset, memory system, and other
peripherals.

6.1. System Environment

The configuration of processor core and peripherals are shown
in Table 3. The caches are chopped to 512KB from 1MB of ASIC
design to fit the capacity of FPGA.

Table 3. FPGA Configuration of Processor
 Characters Frequency
Processor core 4 issues

Out of order
64KB I-cache
64KB D-cache

25MHz

L2 cache 512 KB 25MHz
Memory controller 64 bit DDR2

1GB
40MHz

HyperTransport
controller

 25MHz

HyperTransport
Bus

8 bit width /
16 bit width

200MHz

PCI/LPC controller 33MHz
L1/L2 Xbar 128 bit width 25MHz
Peripheral devices 10M/100M NIC on PCI

GMAC on South bridge
PATA on South bridge
Flash, PS/2 on LPC
Serial port on LPC
UART port, SPI flash

7

6.2. Software Stack
PMON will be first booted up on the Multi-FPGA platform after

system reset. It will first initialize the processor core, caches, and
then the memory controller. After that, it will initialize the
HyperTransport interface and the devices on south bridge.

After everything is initialized, a network card on the PCI bus of
south bridge is activated. Linux kernel is downloaded by the
Ethernet link from a tftp sever.

When Linux is running, many other devices on south bridge are
set up to work, including the IDE hard disk, GMAC Ethernet
controller, and etc.

Many things can be done on Linux operating system. A lot of
benchmarks are tested, including SPEC CPU 2000, LMbench, ftp
downloading, stream test, and etc.

Some of the testing results are given in the following section.

6.3. Debugging
The best place to debug a processor bug is in the simulation

environment, where all signals are available for scrutiny.
Unfortunately, in the system environment of real system almost no
internal signals are visible to the system debugger. A suite of tools
was developed for use in the Pentium processor [25], using both
architectural and micro-architectural features of the processor.

FPGA platform is also hard to debug when any abnormality
emerges, as signals inside are difficult to probe. But bugs are not
occasional at the very beginning. Thus the way to debug must be
under consideration.

Some observing points are injected into the DMA path from
HyperTransport controller to the memory controller for checking
where a data corruption has happened.

Each observing point is a monitor that can be triggered by a
software programmable pattern. All of the monitors are chained
together in a daisy-chain topology by two sets of buses called
configure bus and configure return, which are controlled by the
configuration registers module as Fig.9.

L2
Cache

Level-1 Xbar

Level-2 Xbar

Config
Registers

HT
Controller

SouthBridge
I/O Link

Memory
Controller

DDR2/3
SDRAM

Upper FPGA

Interconnecting
Bus

Monitor0

Monitor1

M
on

ito
r2

Figure 9. Injection of Monitors

The configure bus transmits the read or write command with
address and write data, while configure return contains the
response from the selected monitor. Software can access the
monitors by accessing the configuration registers module.

With the help of injected monitors, it is easy to tell where the
problem may be.

We once encountered a problem which causes data downloaded
by the Ethernet through the HyperTransport link sometimes

incorrect in the memory. As the location in memory is not random,
triggers are set in the monitors to locate where the data is corrupted.
Three monitors are injected between the HyperTransport PHY and
controller, HyperTransport controller and Level-1 Xbar, memory
controller and Level-2 Xbar just as shown in Fig.9. After compared
data from the three monitors, a mismatch was found between the
FPGA RAM and ASIC RAM. At last the problem is resolved by
replacing the FPGA RAM with register files.

7. PERFORMANCE EVALUATION

Another goal of the MFP is to evaluate the system performance
compared to the real system, but the clock frequency of memory
controller is too fast compared to the one of processor core,
causing the delay of memory access from the processor too short
compared to a real system. To emulate the memory access delay as
accurate as possible, a set of FIFO is introduced into the memory
access path.

As a memory access delay in the DDR clock domain is about
30-35 clock cycles, about 70 cycles should be injected into the
clock domain of process core to emulate the real memory access
delay from the process core in the Multi-FPGA platform.

The impact of different memory access delay can be viewed in
Fig. 10, 11 and 12. Four kind of delay are injected into the memory
accessing path, including 0, 60 cycles, 70 cycles and 80 cycles.

Figure 10. Bandwidth in different test (unit: MB/s)

The results of testing hdparm, copy and network download are

shown in Fig.10. The results of train scale SpecCPU 2000 are
shown in Fig.11 and Fig.12. It is obvious that the few cycles
injected, the higher the performance is achieved in most of the
cases.

Figure 11. Execution time of Spec2000 INT (unit: Sec)

8

Figure 12. Execution time of Spec2000 FP (unit: Sec)

For some benchmarks in SpecCPU 2000, performance is slightly

influenced by the increased delay of memory access, such as gzip,
gcc, crafty, eon. That may be caused by the low miss rate in L2
cache, which alleviate the impact of increasing memory access
delay.

8. CONCLUSION

As mentioned before, software simulation is time costing and
impracticable for verifying and evaluating a state of art micro-
processor such as Godson-2G. With shortcoming that the peripheral
interfaces are hard to be verified in the hardware-based emulation,
Multi-FPGA platform is developed for verification and evaluation
of Godson-2G.

In this work we provide:

1) Although the current FPGA technology cannot accommodate
a big design into one single device, the multi-FPGA based
solution is a viable approach to emulating such a tightly-
couple design as modern processors.

2) Even high-speed peripherals like HyperTransport and can be
prototyped using carefully tuned FPGA.

3) Compared to post-silicon debugging, locating bugs and
performance bottleneck is relatively easy by instruct a
monitoring segments into the raw design.

The multi-FPGA based emulation system serves as a powerful
environment for both architectural exploration and functional
verification. Its capability to quickly model architectural
modifications and accurately predict their performance effect to
facilitate systems to chips innovations.

9. ACKNOWLEDGEMENT

Reference

[1] HyperTransport Technology Consortium. HyperTransport I/O
Link Specification Revision 1.03. 2001.
[2] HyperTransport Technology Consortium. HyperTransport I/O
Link Specification Revision 3.00a. 2006.
[3] Chetana N. Keltcher, Kevin J. McGrath, Ardsher Ahmed and
Pat Conway. “The AMD Opteron Processor For Multprocessor
Servers”. IEEE Micro, No.2, 2003.
[4] Intel Corporation. “Intel Xeon Processor 7400 Series
Datasheet”. October 2008.

[5] Cadence Design Systems. “Xtreme server”. 2005.
DOI=http://www.cadence.co.in/products/functionalver/xtremeserv
er/index.aspx
[6] Helena Krupnova and Gabriele Saucier. FPGA-based
Emulation: Industrial and Custom Prototyping Solutions. In
Proceedings of International Conference of Field-Programmable
Logic Applications. August 2000, pp. 68-77.
[7] Cadence Design Systems. “Palladium accelerator/emulator”.
2003.
DOI=http://www.cadence.com/products/functionalver/palladium/in
dex.aspx.
[8] Ateshian, Peter and Zulaica, Daniel. “ARM Synthesizable
Design with Actel FPGAs: with Mixed-Signal SoC Applications
(set 3)”. 2010.
[9] Nathaniel Pinckney, Thomas Barr, Michael Dayringer,
Matthew McKnett, Nan Jiang, Carl Nygaard, David Money Harris,
Joel Stanley and Braden Phillips. A MIPS R2000 Implementation,
DAC 2008 pp. 102-107.
[10]Zhangxi Tan, Krste Asanovic and David Patterson. An FPGA
Host-Multithreaded Functional Model for SPARC v8. In
Proceedings of the 3rd Workshop on Architectural Research
Prototyping. 2008.
[11]Roland E. Wunderlich and James C. Hoe. In-system FPGA
Prototyping of An Itanium Microarchitecture. ICCD 2004: In
Proceedings. IEEE International Conference on Computer Design:
VLSI in Computers and Processors. 2004, pp. 288-294.
[12]Rod Blaine Foist, Cristian Sorin Grecu, André Ivanov and
Robin F. B. Turner. “An FPGA Design Project: Creating a
PowerPC Subsystem Plus User Logic”. IEEE Transactions on
Education, Volume 51, Issue 3, Aug. 2008, pp. 312–318.
[13]Shih-Lien L. Lu, Peter Yiannacouras, Rolf Kassa, Michael
Konow and Taeweon Suh. An FPGA-based Pentium® in a
complete desktop system. In Proceedings of the 2007 ACM/
SIGDA 15th international symposium on Field programmable gate
arrays. 2007, pp. 53-59.
[14]Perry H. Wang, Jamison D. Collins, Chris T. Weaver,
Belliappa Kuttanna, Shahram Salamian, Gautham N. Chinya,
Ethan Schuchman, Oliver Schilling, Thorsten Doil, Sebastian
Steibl and Hong Wang. Intel® atom™ Processor Core Made
FPGA-Synthesizable. FPGA '09: In Proceeding of the
ACM/SIGDA international symposium on Field programmable
gate arrays. 2009, pp. 209-218.
[15]John Wawrzynek, David Patterson, Mark Oskin, Shih-Lien Lu,
Christoforos Kozyrakis, James C. Hoe, Derek Chiou and Krste
Asanovic. “RAMP: Research Accelerator for Multiple Processors”.
IEEE Micro, Vol.27, No.2, 2007.
[16]Weiwu Hu, Fuxin Zhang and Zusong Li. “Microarchitecture of
the Goodson-2 Processor”. Journal of Computer Science and
Technology. 2005, 20(2):243-249.
[17]Weiwu Hu, Jian Wang, Xiang Gao, Yunji Chen, Qi Liu and
Guojie Li. “Godson-3: A Scalable Multicore RISC Processor with
x86 Emulation”. IEEE Micro, Vol.29, No.2, 2009.
[18]Weiwu Hu, Jiye Zhao, Shiqiang Zhong, Xu Yang, E. Guidetti
and Christ Wu. “Implementing a 1GHz Four-issue Out-of-Order
Execution Microprocessor in a Standard Cell ASIC Methodology”.
Journal of Computer Science and Technology. 2007,22(1),1-14.
[19]MIPS technology. MIPS64® Architecture For Programmers
Volume I: Introduction to the MIPS64® Architecture. 2008.
[20]ARM®. AMBA® AXI Protocol v1.0 Specification. 2004.
[21]Huandong Wang, Dan Tang, Xiang Gao and Yunji Chen. An
Enhanced HyperTransport Controller with Cache Coherence
Support for Multiple-CMP. NAS 2009. In Proceeding of IEEE

9

International Conference on Networking, Architecture, and Storage.
2009, pp. 215-218.
[22]Weiwu Hu, Weisong Shi and Zhimin Tang. JIAJIA: An SVM
System Based on a New Cache Coherence Protocol. In Proceeding
of HPCN’99, 1999, pp. 463-472.
[23]Xilinx. “Virtex-5 Multi-Platform FPGAs”.
DOI=http://www.xilinx.com/products/virtex5/

[24]Synplicity Inc. “Certify”.
DOI=http://www.synplicity.com/products/certify/
[25]Adrian Carbine and Derek Feltham. “Pentium Pro processor
design for test and debug”. IEEE Design & Test of Computers.
Vol.15, No.3, 1998, pp. 77–82.

