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ABSTRACT 
Software simulation has become a powerful method in 

development of processors, but to simulate processors with a state 
of art architecture has become extremely difficult. The simulation 
of this kind of the processors is time-costing as the scale becomes 
larger and larger complied with the Moore’s low. Accompanied 
with the enlargement of scale, many high-speed IOs are integrated 
into processors as SOC chips, causing another problem that the 
verification of high speed IOs is very limited for software 
simulation. With the help of FPGA based platform, the verification 
and evaluation of processors can be done in a relative high speed. 
The FPGA based platform also provides a real environment with a 
lot of real chips working together for the verification of high speed 
IOs. In this work, a multi-FPGA based platform used for 
verification and evaluation of Godson-2G processor is introduced. 
Tactics for a semi-custom partitioning and the design flow are 
discussed. Method to emulate DDR and HyperTransport PHYs is 
offered after that. Instrumentation based debugging and the 
performance evaluations are both presented at the end of this paper. 
 
Categories and Subject Descriptors 
C.1.0 [Processor Architectures]: General 
 
General Terms 
Design, Verification, Performance 
 
Keywords 
Godson-2G, Multi-FPGA, emulate, verification, evaluation 

 
1. INTRODUCTION 

Today’s general-purpose processors have been evolving towards 
having more functional peripherals on-chip to provide higher 
performance and better cost-effective solutions. AMD has been 
using on-chip memory controller and HyperTransport [1] [2] links 
for years in its Athlon64 and Opteron [3] processors. Intel’s latest 

Nehalem [4] processor family also departs from the traditional 
front side bus and integrates the memory controller into the CPU. 
Furthermore, other system components such as PCI-E, GPU, 
finding their positions in general-purpose processors has been a 
matter of “when”, rather than “if”. 

With the unprecedented level of chip integration leading to 
much more design and verification efforts, processor designers are 
facing great challenges. More peripheral components added into 
the chip expand the already huge design space. Interactions 
between components get much more complicated. System-level 
evaluation and decision-making are suffocated by the slow 
simulation speeds. Meanwhile, the lack of detailed and ample 
peripheral modeling in the RTL-level simulation environments 
brings high risk into the pre-silicon verification.  

To address challenges from design exploration and pre-silicon 
verification, more and more processor designer resort to FPGA-
based prototype. As widely-deployed platforms in the area of SoCs 
and ASICs, the flexibility, speed, and enormous capacity qualifies 
them for the emulation of large and complex systems. 
Nevertheless, a typical state of art processor always exceeds the 
capacity of the largest modern FPGA device. The largest FPGAs 
before 2009 in production have an estimated equivalent capacity of 
about 1.5 million gates or 30 million transistors. Prototyping a 
modern processor larger than this means spreading the 
functionality across multiple FPGAs. It is a complicated task, but 
one that is well worth the effort.  

This paper presents a multi-FPGA based platform (called MFP) 
which prototype the Godson-2G (also known as Loongson-2G), a 
modern superscalar processor with transistor number exceeding 
100M .To the best of our knowledge, the MFP is the first platform 
capable of emulating a state of art processors across multi-FPGA. 
Taking into account the trend toward ever-increasing levels of 
processor integration, we view Multi-FPGA as inevitable in the 
long term for the pre-silicon functional verification and 
architectural evaluation. It’s also a very promising and 
straightforward step to emulate huge ASICs/SOCs chips. 

In the MFP system, different kinds of I/O peripheral are working 
together. The emulated processor core can run at up to 25 MHz. As 
well, the integrated DDR2/3 controller can work at 40 MHz and 
HyperTransport controller at 25 MHz. At such speeds, it is 
sufficient to boot unmodified operating system, enabling processor 
designer to carry out a diverse variety of architectural explorations. 
Time-consuming benchmarks, including both computing-intensive 
and IO-intensive applications, can be completely and fast evaluated. 
For example, the entire SPEC CPU 2K benchmark in train scale 
can be completed within twelve hours, in contrast to about a week 
by the Xtreme emulation [5], resulting in a significant 
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improvement into the pre-silicon performance prediction. 
 
The key contributions of the work include: 

 We analyze a 100M-transistor-scale superscalar processor 
implementation on two virtex-5 FPGAs. Methodology to 
partition, synthesis, and map an almost-unmodified RTL 
design to a multi-FGPA target are detailed. 

 We present the experiences under FPGA environment to 
emulate the high-speed I/O peripherals, including Hyper-
Transport and DDR2/3. 

 System-level Debugging, we share our methods and 
experience in tackling the problem at system-level 
developing. 

 Preliminary evaluation of pre-silicon performance, including 
computing-intensive and I/O-intensive bench-marks 
validation is presented.  
 

The remaining sections of this paper are organized as following. 
Section 2 summarizes related work and introduces the architecture 
of Godson-2G micro-processor. Section 3 describes the multiple 
FPGA platform used in this work. Section 4 discusses the semi-
custom partitioning and design flow. Section 5 presents the method 
to emulate the high speed IO. Section 6 details a debugging method 
in FPGA and Section 7 gives some evaluation results. 

 
2. BACKGROUND 

As the scale of chip design increasing rapidly, it is difficult to 
evaluate a design only by software simulation. Although the 
emergency of multi-FPGA based [6] or hardware based emulation 
accelerator greatly speeds up simulation or emulation, IO behaviors 
and different IO specifications are still hard to verify. While the 
capability of a single FPGA platform is too small for emulating a 
100M-transistor-scale processor, a multi-FPGA based platform is 
one of the best way to verify and evaluate the design of Godson-2G 
micro-processor. 
 
2.1. Related Work 

The three main options for evaluation and verification open to 
processor designers are simulation, emulation, and FPGA-based 
prototypes. The ever-increasing chip scale makes the software 
simulation notoriously slow to simulate an entire chip at RTL-
accurate level. The fastest true RTL-accurate simulators of modern 
processors run at about 1 KHz to 10 KHz, which means two 
minutes of simulated time in approximately corresponding to one 
to ten years of simulation time. At such speeds, it is impractical to 
use realistic program to explore, evaluate and refine micro-
architectures.  

Hardware-based emulation is another reasonably popular 
technique, which can be viewed as a kind of accelerated and board-
pluggable simulation. Several companies such as 
Cadence/(Xtreme,Palladium [7]),  Mentor, Synopsys, EVE and 
Tharas sell FPGA-based accelerators, emulators or tools that take 
arbitrary RTL and map it to hardware to improve simulation 
performance. The emulators tend to be very expensive due to their 
complexity. With an equivalent speed of only 500 KHz to around 
2MHz, however, it's still two to three orders slower than the real 
chip. As peripheral I/O devices in the emulation system are 
working at their real speed, the extreme speed imbalance between 
I/O peripheral and the emulated processor will introduce many odd 
obstacles to system-level evaluations. Taking the TCP/IP 
connection as an example, low frequency of the processor lead to 

unexpected packet losses and connection termination. Besides, I/O 
Bus adhere to the emulated processor should also work at a much 
lower speed than the sane frequency, causing I/O devices on the 
bus behave abnormally. 

For almost all mainstream architectures, there have been FPGA-
synthesizable processor designs, including ARM [8], MIPS [9], 
SPARC [10], Itanium [11], and PowerPC [12]. Lu et al. [13] 
previously presented an FPGA-synthesizable version of Intel’s 
vintage Pentium processor. Another notable work was the Intel 
Atom prototyping reported in [14], which for the first time 
disclosed Intel’s effort to implement an FPGA-synthesizable 
version of a modern x86 processor.  

But the modern processor can accommodate only a fraction of 
the whole processor chip, making system-level validation still a 
dilemma. 

Fortunately, Moore's law has not only enabled these dense 
multi-core chips, it has also enabled extremely dense FPGAs.  

Compared with powerful modern processor, processor cores 
mentioned above are relatively simple and small. Even the biggest 
one of them, namely Atom, consumes a total of 47.2 million 
transistors, allowing the whole design being mapped into a single 
FPGA. Contrary to these approaches, we implement the whole 
processor chip into multiple FPGAs, which removes the chip-size 
limitation caused by the bounded capacity of a single FPGA device. 
Furthermore, on-chip peripheral interfaces are also integrated, 
making the system-level validation feasible and reliable. 

The RAMP collaboration [15] is building the necessary 
infrastructure to compose systems of up to 1024 processors. It is 
targeted at facilitating software research in many-core era. The 
processor cores adopted by RAMP are simple in complexity and 
small in size. One to two dozen cores can be programmed into a 
single FPGA. However, it lacks the ability to validate a state of art 
commodity processor that exceeds the capacity of a single FPGA. 

 
2.2. The Godson-2G Processor 

The Godson project, which was initiated by ICT-CAS in 2001, 
was the first attempt to develop high performance general purpose 
processors in China [16]. Godson-2G, the latest member of Godson 
processors supposed to tape out in 2009, is the single core version 
of Godson-3 [17]. The chip measures 53.90 mm2 in size and 
consumes 106.8 million transistors. The estimated peak frequency 
is up to 1GHz and the power dissipation is 5-7 Watt depending on 
applications.  

The architecture of Godson-2G is shown in Fig.1. The chip is 
based on two crossbars with 128-bit width data buses. The 
Crossbar with 2x2 ports called Level-1 Xbar connects the 
processor core, L2 Cache and HyperTransport controller. The other 
one with 2x3 ports called Level-2 Xbar slots in between L2 Caches, 
DDR2/3 controllers and PCI/LPC interface.  

The processor core of Godson-2G (named GS464) implements 
MIPS64 instruction set [18] in a four-issue, out-of-order execution 
way [19]. It fetches and decodes four instructions per cycle and 
dynamically issues them to five fully pipelined functional units 
(two fix-point, two floating-point and one memory access unit). 
Instructions are issued out of order by two 16-entry reservation 
stations and are committed in program order by a 64-entry reorder 
queue. Two 64-entry physical register files are used for register 
renaming of the general purpose and floating point registers 
separately. An 8192-entry pattern history table, a 9-bit global 
history register, a 16-entry branch target buffer and a 4-entry return 
address stack keep the branch history information for prediction. 
GS464 has a 64KB instruction cache and a 64KB data cache. A 24-
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entry memory access queue that contains a content-addressable 
memory for dynamic memory disambiguation supports out-of-
order memory access and non-blocking cache in GS464.  

The Godson-2G supports a broad range of IO interfaces. These 
peripherals can be classified into two categories: the high speed IO 
and the low speed IO. High-speed IO controllers are critical for 
efficient executions of throughput based workloads, while low 
speed IO controllers provide flexibility to form a functionally 
complete system. The current version of Godson-2G encompasses 
one high-speed HyperTransport controller. The low speed IO 
interfaces in Godson-2G include PCI/LPC controller, UART 
controller, SPI controller and GPIO controller.  

 
The two crossbars inside the Godson-2G processor are running 

different protocol. A cache coherence supported AXI protocol [20] 
is running on the Level-1 Xbar, while a standard AXI protocol is 
running on the Level-2 Xbar. Devices with requirement of cache 
coherence are placed onto the level-1 crossbar, such as L2 cache 
and Hyper-Transport controller. As the HyperTransport controller 
is placed on the Level-1 Xbar, cache coherence protocol between 
the native cache and IO device or remote cache in the other 
processors connected by the HyperTransport bus can be simply 
maintained. [21] 

The low speed devices without cache coherence requirement are 
placed onto the level-2 crossbar, such as PCI/LPC controller, 
DDR2/3 SDRAM controller, UART controller, SPI controller, and 
GPIO controller. Without cache coherence protocol supported, 
software method can be used to maintain the coherence with 
caches. [22] 

 
3. STRUCTURE OF THE PLATFORM 

As a high performance SOC chip, pre-silicon validation in the 
FPGA platform of Godson-2G raise compelling requirements, 
including: 

 
 Completeness. The capacity of the platform should be big 

enough to accommodate the whole chip design. 
 Flexibility. The platform should be flexible for evaluating 

different kinds of application, including benchmarks for 
computing power and IO performance, running different kinds 
of peripheral devices. 

 Applicability. Fast and accurate performance prediction for 
both IO-intensive and computing-intensive application. 
 

To address these requirements and challenges, we propose a 
two-board solution to spread system functionality across two 
boards. The resulting MFP platform is constructed by a mother 

board and an FPGA daughter board. The mother board contains all 
necessary building peripheral chips and device slots, while the 
FPGA daughter board hosts the whole Godson-2G. To ease 
hardware platform setup, S2C’s Dual Virtex-5 TAI Logic Module 
board is used as the FPGA daughter board. Two boards are erected 
together through high-speed PCB-to-PCB connectors. The photo of 
the Godson-2G MFP platform is shown in Fig. 2. The FPGA 
daughter board is placed above the mother board in the left. 

 
3.1. Mother Board 

The mother board contains the LPC interface part, the PCI 
interface part, SPI flash, UART ports and the south bridge part. 
LPC interface is connected to a LPC flash which stores the CPU 
booting codes, a nixie tube as debugging display and a super IO 
chip. The super IO chip is used for the function of serial port, PS/2 
ports for keyboard and mouse. The PCI interface is led to two 
standard 32-bit PCI sockets. The LPC, SPI, UART and PCI 
interfaces on the mother board are directly connected to the 
LPC/PCI controller and the Low-speed controller in the FPGAs. 

To evaluate the compatibility of the HyperTransport interface, 
two different mother boards are designed. The first one is using an 
Nvidia chipset as south bridge as shown in Fig.2, the other one is 
using AMD chipset, not shown here.  

The chipsets in the mother boards are connected to the upper 
FPGA through HyperTransport interface. Most of the right half of 
two mother boards is occupied by various peripherals of the south 
bridge, including PATA socket, SATA sockets, PCI sockets, PCI-E 
sockets, VGA port, LPC interface and GMAC interface with a 
GMAC PHY chip on board.  

 
 
3.2. FPGA Daughter Board 

The Virtex-5 330 [23] is a Xilinx FPGA with about 330K logic 
cells inside. The capacity of this FPGA is the largest before 2009, 
but still too small for this design. S2C Dual Virtex-5 330 TAI Logic 
Module is designed for rapid SoC/ASIC prototyping.  One TAI 
Logic Module is equipped with two Virtex-5 330 FPGA (as shown 
in Fig.3, called Upper FPGA and Lower FPGA), and has two 
DDR2 SO-DIMM sockets for memory extensive applications. 
There are 600 wires connecting between the two FPGAs, and many 
other pins routed to twelve IO connectors distributed on the 
daughter boards.   

Figure 2. FPGA platform of Godson-2G 
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Three of the IO connectors are used in this work. The one from 
Lower FPGA is used for LPC interfaces; two from the upper FPGA 
are used, one for HyperTransport link, the other one for LPC, PCI, 
SPI and UART interfaces. 

 
 

4. PARTITIONING AND SYNTHESIZING 
In the whole design flow, partitioning is the most important and 

complicated phase; afterward both parts of the partitioned design 
are synthesized separately and mapped into two FPGA chips on the 
same daughter board. Although EDA vendors has provided 
software tools such as Certify [24] to build multi-FPGA based 
prototypes of ASIC design in an easy, intuitive fashion, special care 
must be taken to avoid an inefficient solution when applying to a 
state of art processor like Godson-2G .  

An unevenly partitioned design can easily consume 100% of the 
I/O resources on a device while at the same time utilizing only a 
relatively small amount of its internal logic resources. In the MFP 
implementation, we develop a semi-custom design flow. The 
partitioning in MFP is manually done to take into consideration the 
interaction between components in different FPGAs. Another 
purpose of manual partition is to avoid multiplex groups of IOs 
together, which may result in a difficult, time-consuming and 
cumbersome development cycle. 

As for synthesizing, the RTL code of Godson-2G is entirely 
written in strictly synthesizable verilog language. 

 
4.1. Partitioning Metrics 

With two FPGA chips involved, it is important to partition the 
whole design into two parts, synthesize separately and map into 
corresponding FPGA. The way to partition is mainly determined 
by three facts. The first is resource utilization of each chip, the 
second is number of wires left for communication between the two 
chips, and the third is the location of IO interface from the mother 
board. 

Partition may be a complicated work for most multi-FPGA 
designs. The worst case is that times of iteration might take place 
when a partition can not fit well. To avoid this problem, we do a 
semi-custom partition in the view of architecture. We make some 
modification to the original architecture of Godson-2G and 
partition it into two subsystems. The first one is computing 
subsystem with only processor core and LPC controller embedded, 

with the purpose to be verified independently in a single FPGA 
system by fetching instructions and printing debugging messages 
through the LPC interface. The other one is an IO and memory 
subsystem including the rest parts of Godson-2G.  

The architecture of computing subsystem just looks like the 
Lower FPGA in Fig.4. Some tailored application with usage of 
only LPC bus such as serial port, LPC flash and nixie tube can be 
run on this system. The width of bus used for interconnection 
between the two subsystems is no more than 600, making direct 
communication between two FPGA possible. Direct 
communication proves great convenience for a multi-FPGA design, 
as no frequency doubling is needed, causing no frequency 
degression. 

With full acknowledgement that the Lower FPGA with only the 
processor core and PCI/LPC controller embedded works well, the 
problem left is just to deal with the upper FPGA, which contains 
the IO and memory subsystem.  

Considering all reasons mentioned above, architecture of 
Godson-2G FPGA is divided into two parts, as shown in Fig.4. 
Most of the IO interfaces are mapped into the Upper FPGA, with a 
replicate LPC controller integrated in the Lower FPGA marked as 
dotted lines in Fig.4, which can be bypassed when the two FPGAs 
working together.  

PCI

LPC

L2
Cache

Level-1  Xbar

Level-2 Xbar

Config 
Registers

Processor
CORE

HT
Controller

LPC 
Controller

SouthBridge
I/O Link

Memory 
Controller

DDR2/3
SDRAM

Figure 4. Architecture of Godson-2G FPGA

MUX

LPC I/O Link

Lower FPGA

Upper FPGA

Interconnecting 
Bus

PCI/LPC 
Controller

Low-end I/O 
Controller

SPI, UART

 
The interconnecting bus between two FPGA is the original 

processor core interface which contains no more than 600 wires. As 
a LPC or PCI access need not to be cached, the replicate LPC 
controller can be placed into the Lower FPGA and connected 
directly to the processor core as a slave device by a multiplexer 
which is enabled when debugging and disabled at normal mode. 
Placing the LPC controller into the Lower FPGA can make full 
utilization of the IO pins in Lower FPGA and also make the Lower 
FPGA can be verified separately and before the whole system 
ready but also brings a little difference from the original 
architecture of Godson-2G. 

Figure 3. Boards of FPGA platform 
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Thus the Lower FPGA contains a basic system which can boot 
up the processor core with BIOS codes stored in LPC flash and 
interactive through serial port by the LPC bus. The upper FPGA 
contains the IO subsystem, including L2 cache, memory controller 
and HyperTransport controller and all other interfaces of Godson-
2G. 
 
4.2. Design Flow 

The entire design flow for verification and evaluation on Multi-
FPGA platform is shown in Fig.5. 

  
Original source code of Godson-2G is modified for the FPGA 

architecture and partitioned into Uint-1 and Unit-2 for the two 
pieces of FPGA. Some modules need not be verified in FPGA are 
removed, including the test controller, ejtag controller. 

FPGA PHYs (SERDES) are used to replace the original ASIC 
PHYs in the design, including Hyper-Transport PHY and DDR2/3 
PHY, which are hard cores in ASIC design. ASIC RAMs should be 
replaced by FPGA RAMs, too.  

That is the all modification done to source code. Before 
synthesizing, source code of FPGA is first verified using 
simulation tools in random verification environment to avoid any 
low class bugs that may be injected by the modification.  

All pins of the two FPGA are then allocated by their bus 
location and corresponding IO standard.  

After all these have been done, source codes for Unit-1 and 
Unit-2 is then synthesized separately in ISE, a synthesizing tool for 
Xilinx FPGA, to generate the binary files for downloading. 

A lot of applications including BIOS, Linux and different kinds 
of benchmarks are run and debugged on the MFP at the phase of 
FPGA emulation. 

Resource utilizations of each FPGA are shown in Table 1. 
 

Table 1. Resource utilization of each FPGA 
 Upper FPGA Lower FPGA 
Logic Utilization 
 Slice registers 46% 27% 
 Slice LUTs 65% 77% 
Logic Distribution 
 Occupied slices 79% 88% 
IO Utilization 
 Bounded IOBs 67% 43% 

Block RAM 56% 78% 
 
Utilization from both FPGA synthesizes and ASIC designs are 

shown in Table 2. There are some differences in the utilization 
between FPGA and ASIC. That many be caused by the different 
treatment about RAM and different cells used in FPGA and ASIC. 
Each slice of FPGA contains several registers and combining logic; 
while each instance of ASIC may be a register, a logic gate or a 
hard core, causing difference between the two designs. 

 
Table 2. Resource utilization of FPGA and ASIC 

 FPGA slice 
number 

Percent ASIC instance 
number 

Percent 

Processor core 93182 56% 800171 41% 
HyperTransport 22041 13% 427651 22% 
DDR2/3 19167 11% 405685 21% 
Level-1 Xbar 13907 8% 68222 4% 
Level-2 Xbar 8419 5% 56603 3% 
Config registers 2102 1% 19987 1% 
Level-2 cache 5883 4% 160124 8% 

 
5. EMULATING HIGH-SPEED IO 

Godson-2G is a high performance SOC with high-speed 
peripherals, including DDR2/3 SDRAM interface and 
HyperTransport interface.  

One of the targets of Multi-FPGA platform is to verify the 
peripheral interfaces and their interactivities with the third-party 
chips. That’s why we designed two different mother boards with 
different chipsets. The emulation of the DDR2/3 and 
HyperTransport PHY is an important step to achieve this goal. 
PHY (or SERDES) is a full custom designed hard core embedded 
on chip, used for high-speed transmission. The interface frequency 
of HyperTransport PHY in Godson-2G is 800MHz and DDR2/3 
PHY is 400MHz. As for FPGA prototyping, this part must be re-
implemented especially to emulate the function of the hard core in 
physical design.  

The FPGA PHY of HyperTransport targets at 200 MHz and the 
DDR2/3 PHY targets at 40 MHz. 

The main function of PHY is to convert between a set of parallel 
signals and a serial DDR (Double Data Rate) signal for on-board 
transmission. Driver of PHY is used to transform the internal 
parallel signals to external serial signal. Receiver of PHY is used to 
transform the external serial signal to internal parallel signals. 

Another function is clock phase adjustment. Both output clock 
of driver and input clock of receiver might need to be adjusted 
according to the protocol. 
 
5.1. HyperTransport Interface 

The link frequency of HyperTransport PHY must be at least 
200MHz due to HyperTransport specification. So that the 
corresponding control logic should run at 100MHz to communicate 
with south bridge. 

As For the HyperTransport interface, ratio of parallel data to its 
corresponding serial signal is 4:1. For example, the waveform of 
driver signals is shown in Fig.6. The four parallel data from the 
control logic named PHY_Dn (n = 0...3) are driven by the clock 
named PHY_clk which is running at 100MHz. They are serialized 
to generate the link signal HT_cad. Clock frequency is doubled and 
clock phase is postponed according to the protocol requirement. 
For the receiver part of PHY, it just reverses the course to de-
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serialize the four PHY_Dn data from the external HT_cad and 
restores the half-frequency clock from the HT_clk.  

With the implementation of FPGA PHY, frequency of 
HyperTransport interface is 200 MHz after system cold reset, with 
a link width of 8 bits. A set of asynchronous FIFO is placed 
between PHY and controller to transmit the data between 100 MHz 
clock domain of PHY and 25 MHz clock domain of the controller. 

Placement of PHY can be viewed in the architecture of 
HyperTransport interface in Fig.7. The Tx control logic and the Rx 
control logic are running at 100 MHz, while the HT controller is 
running at 25 MHz with three sets of asynchronous FIFOs between 
them.  

 
 

 
 
5.2. DDR2/3 Interface 

Frequency requirement of DDR link is not as restrict as 
HyperTransport link. Thus the DDR2/3 PHY can also run at 40 
MHz as DDR2/3 controller in the same clock domain. 

The signal processing method of the DDR2/3 PHY is similar to 
HyperTransport PHY. Both them are double data rate compared to 
clock frequency.  

 
In order to centralize the DDR_dqs signal to the DDR_dq 

signals in a memory write access, two clocks are introduced into 
DDR2/3 PHY, as shown in Fig.8, marked as CLK_dqs and 
CLK_data. The latency from CLK_dqs which is responding for 
DDR_dqs to CLK_data which is responding for DDR_dq is one-
forth clock phase.  

For read dqs and read data, the DDR2/3 PHY is also responding 
for centralizing the positive edge of DDR_dqs to the DDR_dq 
signals, de-serializing and synchronizing the data to memory 
controller clock domain.  

As there is no phase separation between read dqs and read data, 
read dqs must be delayed one-forth clock phase to sample and de-
serialize the read data. Thus a set of delay line logic is placed into 
the DDR2/3 PHY for each read dqs. 

 
6. INTEGRATION AND DEBUGGING 

In MPF validation, the processor is tested in a system setting. 
Validation in this setting concentrates not only on the processor, 
but also interaction with chipset, memory system, and other 
peripherals.  

 
6.1. System Environment 

The configuration of processor core and peripherals are shown 
in Table 3. The caches are chopped to 512KB from 1MB of ASIC 
design to fit the capacity of FPGA. 
 

Table 3. FPGA Configuration of Processor 
 Characters Frequency 
Processor core 4 issues 

Out of order 
64KB I-cache 
64KB D-cache 

25MHz 

L2 cache 512 KB 25MHz 
Memory controller 64 bit DDR2 

1GB 
40MHz 

HyperTransport 
controller 

 25MHz 

HyperTransport 
Bus 

8 bit width / 
16 bit width 

200MHz 

PCI/LPC controller  33MHz 
L1/L2 Xbar 128 bit width 25MHz 
Peripheral devices 10M/100M NIC on PCI 

GMAC on South bridge 
PATA on South bridge 
Flash, PS/2 on LPC 
Serial port on LPC 
UART port, SPI flash 
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6.2. Software Stack 
PMON will be first booted up on the Multi-FPGA platform after 

system reset. It will first initialize the processor core, caches, and 
then the memory controller. After that, it will initialize the 
HyperTransport interface and the devices on south bridge. 

After everything is initialized, a network card on the PCI bus of 
south bridge is activated. Linux kernel is downloaded by the 
Ethernet link from a tftp sever. 

When Linux is running, many other devices on south bridge are 
set up to work, including the IDE hard disk, GMAC Ethernet 
controller, and etc. 

Many things can be done on Linux operating system. A lot of 
benchmarks are tested, including SPEC CPU 2000, LMbench, ftp 
downloading, stream test, and etc. 

Some of the testing results are given in the following section. 
 

6.3. Debugging 
The best place to debug a processor bug is in the simulation 

environment, where all signals are available for scrutiny. 
Unfortunately, in the system environment of real system almost no 
internal signals are visible to the system debugger. A suite of tools 
was developed for use in the Pentium processor [25], using both 
architectural and micro-architectural features of the processor. 

FPGA platform is also hard to debug when any abnormality 
emerges, as signals inside are difficult to probe. But bugs are not 
occasional at the very beginning. Thus the way to debug must be 
under consideration. 

Some observing points are injected into the DMA path from 
HyperTransport controller to the memory controller for checking 
where a data corruption has happened.  

Each observing point is a monitor that can be triggered by a 
software programmable pattern. All of the monitors are chained 
together in a daisy-chain topology by two sets of buses called 
configure bus and configure return, which are controlled by the 
configuration registers module as Fig.9.  

L2
Cache

Level-1  Xbar

Level-2 Xbar

Config 
Registers

HT
Controller

SouthBridge
I/O Link

Memory 
Controller

DDR2/3
SDRAM

Upper FPGA

Interconnecting 
Bus

Monitor0

Monitor1

M
on

ito
r2

Figure 9. Injection of Monitors
 

The configure bus transmits the read or write command with 
address and write data, while configure return contains the 
response from the selected monitor. Software can access the 
monitors by accessing the configuration registers module. 

With the help of injected monitors, it is easy to tell where the 
problem may be. 

We once encountered a problem which causes data downloaded 
by the Ethernet through the HyperTransport link sometimes 

incorrect in the memory. As the location in memory is not random, 
triggers are set in the monitors to locate where the data is corrupted. 
Three monitors are injected between the HyperTransport PHY and 
controller, HyperTransport controller and Level-1 Xbar, memory 
controller and Level-2 Xbar just as shown in Fig.9. After compared 
data from the three monitors, a mismatch was found between the 
FPGA RAM and ASIC RAM. At last the problem is resolved by 
replacing the FPGA RAM with register files. 

 
7. PERFORMANCE EVALUATION 

Another goal of the MFP is to evaluate the system performance 
compared to the real system, but the clock frequency of memory 
controller is too fast compared to the one of processor core, 
causing the delay of memory access from the processor too short 
compared to a real system. To emulate the memory access delay as 
accurate as possible, a set of FIFO is introduced into the memory 
access path. 

As a memory access delay in the DDR clock domain is about 
30-35 clock cycles, about 70 cycles should be injected into the 
clock domain of process core to emulate the real memory access 
delay from the process core in the Multi-FPGA platform. 

The impact of different memory access delay can be viewed in 
Fig. 10, 11 and 12. Four kind of delay are injected into the memory 
accessing path, including 0, 60 cycles, 70 cycles and 80 cycles.  

 

 
Figure 10. Bandwidth in different test (unit: MB/s) 

 
The results of testing hdparm, copy and network download are 

shown in Fig.10. The results of train scale SpecCPU 2000 are 
shown in Fig.11 and Fig.12. It is obvious that the few cycles 
injected, the higher the performance is achieved in most of the 
cases. 

 

 
Figure 11. Execution time of Spec2000 INT (unit: Sec) 
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Figure 12. Execution time of Spec2000 FP (unit: Sec) 

 
For some benchmarks in SpecCPU 2000, performance is slightly 

influenced by the increased delay of memory access, such as gzip, 
gcc, crafty, eon. That may be caused by the low miss rate in L2 
cache, which alleviate the impact of increasing memory access 
delay. 
 
8. CONCLUSION 

As mentioned before, software simulation is time costing and 
impracticable for verifying and evaluating a state of art micro-
processor such as Godson-2G. With shortcoming that the peripheral 
interfaces are hard to be verified in the hardware-based emulation, 
Multi-FPGA platform is developed for verification and evaluation 
of Godson-2G. 

 
In this work we provide: 

1) Although the current FPGA technology cannot accommodate 
a big design into one single device, the multi-FPGA based 
solution is a viable approach to emulating such a tightly-
couple design as modern processors. 

2) Even high-speed peripherals like HyperTransport and can be 
prototyped using carefully tuned FPGA. 

3) Compared to post-silicon debugging, locating bugs and 
performance bottleneck is relatively easy by instruct a 
monitoring segments into the raw design. 
 

The multi-FPGA based emulation system serves as a powerful 
environment for both architectural exploration and functional 
verification. Its capability to quickly model architectural 
modifications and accurately predict their performance effect to 
facilitate systems to chips innovations.  
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ABSTRACT 
Software simulation has become a powerful method in 

development of processors, but to simulate processors with a state 
of art architecture has become extremely difficult. The simulation 
of this kind of the processors is time-costing as the scale becomes 
larger and larger complied with the Moore’s low. Accompanied 
with the enlargement of scale, many high-speed IOs are integrated 
into processors as SOC chips, causing another problem that the 
verification of high speed IOs is very limited for software 
simulation. With the help of FPGA based platform, the verification 
and evaluation of processors can be done in a relative high speed. 
The FPGA based platform also provides a real environment with a 
lot of real chips working together for the verification of high speed 
IOs. In this work, a multi-FPGA based platform used for 
verification and evaluation of Godson-2G processor is introduced. 
Tactics for a semi-custom partitioning and the design flow are 
discussed. Method to emulate DDR and HyperTransport PHYs is 
offered after that. Instrumentation based debugging and the 
performance evaluations are both presented at the end of this paper. 
 
Categories and Subject Descriptors 
C.1.0 [Processor Architectures]: General 
 
General Terms 
Design, Verification, Performance 
 
Keywords 
Godson-2G, Multi-FPGA, emulate, verification, evaluation 

 
1. INTRODUCTION 

Today’s general-purpose processors have been evolving towards 
having more functional peripherals on-chip to provide higher 
performance and better cost-effective solutions. AMD has been 
using on-chip memory controller and HyperTransport [1] [2] links 
for years in its Athlon64 and Opteron [3] processors. Intel’s latest 

Nehalem [4] processor family also departs from the traditional 
front side bus and integrates the memory controller into the CPU. 
Furthermore, other system components such as PCI-E, GPU, 
finding their positions in general-purpose processors has been a 
matter of “when”, rather than “if”. 

With the unprecedented level of chip integration leading to 
much more design and verification efforts, processor designers are 
facing great challenges. More peripheral components added into 
the chip expand the already huge design space. Interactions 
between components get much more complicated. System-level 
evaluation and decision-making are suffocated by the slow 
simulation speeds. Meanwhile, the lack of detailed and ample 
peripheral modeling in the RTL-level simulation environments 
brings high risk into the pre-silicon verification.  

To address challenges from design exploration and pre-silicon 
verification, more and more processor designer resort to FPGA-
based prototype. As widely-deployed platforms in the area of SoCs 
and ASICs, the flexibility, speed, and enormous capacity qualifies 
them for the emulation of large and complex systems. 
Nevertheless, a typical state of art processor always exceeds the 
capacity of the largest modern FPGA device. The largest FPGAs 
before 2009 in production have an estimated equivalent capacity of 
about 1.5 million gates or 30 million transistors. Prototyping a 
modern processor larger than this means spreading the 
functionality across multiple FPGAs. It is a complicated task, but 
one that is well worth the effort.  

This paper presents a multi-FPGA based platform (called MFP) 
which prototype the Godson-2G (also known as Loongson-2G), a 
modern superscalar processor with transistor number exceeding 
100M .To the best of our knowledge, the MFP is the first platform 
capable of emulating a state of art processors across multi-FPGA. 
Taking into account the trend toward ever-increasing levels of 
processor integration, we view Multi-FPGA as inevitable in the 
long term for the pre-silicon functional verification and 
architectural evaluation. It’s also a very promising and 
straightforward step to emulate huge ASICs/SOCs chips. 

In the MFP system, different kinds of I/O peripheral are working 
together. The emulated processor core can run at up to 25 MHz. As 
well, the integrated DDR2/3 controller can work at 40 MHz and 
HyperTransport controller at 25 MHz. At such speeds, it is 
sufficient to boot unmodified operating system, enabling processor 
designer to carry out a diverse variety of architectural explorations. 
Time-consuming benchmarks, including both computing-intensive 
and IO-intensive applications, can be completely and fast evaluated. 
For example, the entire SPEC CPU 2K benchmark in train scale 
can be completed within twelve hours, in contrast to about a week 
by the Xtreme emulation [5], resulting in a significant 
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improvement into the pre-silicon performance prediction. 
 
The key contributions of the work include: 

 We analyze a 100M-transistor-scale superscalar processor 
implementation on two virtex-5 FPGAs. Methodology to 
partition, synthesis, and map an almost-unmodified RTL 
design to a multi-FGPA target are detailed. 

 We present the experiences under FPGA environment to 
emulate the high-speed I/O peripherals, including Hyper-
Transport and DDR2/3. 

 System-level Debugging, we share our methods and 
experience in tackling the problem at system-level 
developing. 

 Preliminary evaluation of pre-silicon performance, including 
computing-intensive and I/O-intensive bench-marks 
validation is presented.  
 

The remaining sections of this paper are organized as following. 
Section 2 summarizes related work and introduces the architecture 
of Godson-2G micro-processor. Section 3 describes the multiple 
FPGA platform used in this work. Section 4 discusses the semi-
custom partitioning and design flow. Section 5 presents the method 
to emulate the high speed IO. Section 6 details a debugging method 
in FPGA and Section 7 gives some evaluation results. 

 
2. BACKGROUND 

As the scale of chip design increasing rapidly, it is difficult to 
evaluate a design only by software simulation. Although the 
emergency of multi-FPGA based [6] or hardware based emulation 
accelerator greatly speeds up simulation or emulation, IO behaviors 
and different IO specifications are still hard to verify. While the 
capability of a single FPGA platform is too small for emulating a 
100M-transistor-scale processor, a multi-FPGA based platform is 
one of the best way to verify and evaluate the design of Godson-2G 
micro-processor. 
 
2.1. Related Work 

The three main options for evaluation and verification open to 
processor designers are simulation, emulation, and FPGA-based 
prototypes. The ever-increasing chip scale makes the software 
simulation notoriously slow to simulate an entire chip at RTL-
accurate level. The fastest true RTL-accurate simulators of modern 
processors run at about 1 KHz to 10 KHz, which means two 
minutes of simulated time in approximately corresponding to one 
to ten years of simulation time. At such speeds, it is impractical to 
use realistic program to explore, evaluate and refine micro-
architectures.  

Hardware-based emulation is another reasonably popular 
technique, which can be viewed as a kind of accelerated and board-
pluggable simulation. Several companies such as 
Cadence/(Xtreme,Palladium [7]),  Mentor, Synopsys, EVE and 
Tharas sell FPGA-based accelerators, emulators or tools that take 
arbitrary RTL and map it to hardware to improve simulation 
performance. The emulators tend to be very expensive due to their 
complexity. With an equivalent speed of only 500 KHz to around 
2MHz, however, it's still two to three orders slower than the real 
chip. As peripheral I/O devices in the emulation system are 
working at their real speed, the extreme speed imbalance between 
I/O peripheral and the emulated processor will introduce many odd 
obstacles to system-level evaluations. Taking the TCP/IP 
connection as an example, low frequency of the processor lead to 

unexpected packet losses and connection termination. Besides, I/O 
Bus adhere to the emulated processor should also work at a much 
lower speed than the sane frequency, causing I/O devices on the 
bus behave abnormally. 

For almost all mainstream architectures, there have been FPGA-
synthesizable processor designs, including ARM [8], MIPS [9], 
SPARC [10], Itanium [11], and PowerPC [12]. Lu et al. [13] 
previously presented an FPGA-synthesizable version of Intel’s 
vintage Pentium processor. Another notable work was the Intel 
Atom prototyping reported in [14], which for the first time 
disclosed Intel’s effort to implement an FPGA-synthesizable 
version of a modern x86 processor.  

But the modern processor can accommodate only a fraction of 
the whole processor chip, making system-level validation still a 
dilemma. 

Fortunately, Moore's law has not only enabled these dense 
multi-core chips, it has also enabled extremely dense FPGAs.  

Compared with powerful modern processor, processor cores 
mentioned above are relatively simple and small. Even the biggest 
one of them, namely Atom, consumes a total of 47.2 million 
transistors, allowing the whole design being mapped into a single 
FPGA. Contrary to these approaches, we implement the whole 
processor chip into multiple FPGAs, which removes the chip-size 
limitation caused by the bounded capacity of a single FPGA device. 
Furthermore, on-chip peripheral interfaces are also integrated, 
making the system-level validation feasible and reliable. 

The RAMP collaboration [15] is building the necessary 
infrastructure to compose systems of up to 1024 processors. It is 
targeted at facilitating software research in many-core era. The 
processor cores adopted by RAMP are simple in complexity and 
small in size. One to two dozen cores can be programmed into a 
single FPGA. However, it lacks the ability to validate a state of art 
commodity processor that exceeds the capacity of a single FPGA. 

 
2.2. The Godson-2G Processor 

The Godson project, which was initiated by ICT-CAS in 2001, 
was the first attempt to develop high performance general purpose 
processors in China [16]. Godson-2G, the latest member of Godson 
processors supposed to tape out in 2009, is the single core version 
of Godson-3 [17]. The chip measures 53.90 mm2 in size and 
consumes 106.8 million transistors. The estimated peak frequency 
is up to 1GHz and the power dissipation is 5-7 Watt depending on 
applications.  

The architecture of Godson-2G is shown in Fig.1. The chip is 
based on two crossbars with 128-bit width data buses. The 
Crossbar with 2x2 ports called Level-1 Xbar connects the 
processor core, L2 Cache and HyperTransport controller. The other 
one with 2x3 ports called Level-2 Xbar slots in between L2 Caches, 
DDR2/3 controllers and PCI/LPC interface.  

The processor core of Godson-2G (named GS464) implements 
MIPS64 instruction set [18] in a four-issue, out-of-order execution 
way [19]. It fetches and decodes four instructions per cycle and 
dynamically issues them to five fully pipelined functional units 
(two fix-point, two floating-point and one memory access unit). 
Instructions are issued out of order by two 16-entry reservation 
stations and are committed in program order by a 64-entry reorder 
queue. Two 64-entry physical register files are used for register 
renaming of the general purpose and floating point registers 
separately. An 8192-entry pattern history table, a 9-bit global 
history register, a 16-entry branch target buffer and a 4-entry return 
address stack keep the branch history information for prediction. 
GS464 has a 64KB instruction cache and a 64KB data cache. A 24-
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entry memory access queue that contains a content-addressable 
memory for dynamic memory disambiguation supports out-of-
order memory access and non-blocking cache in GS464.  

The Godson-2G supports a broad range of IO interfaces. These 
peripherals can be classified into two categories: the high speed IO 
and the low speed IO. High-speed IO controllers are critical for 
efficient executions of throughput based workloads, while low 
speed IO controllers provide flexibility to form a functionally 
complete system. The current version of Godson-2G encompasses 
one high-speed HyperTransport controller. The low speed IO 
interfaces in Godson-2G include PCI/LPC controller, UART 
controller, SPI controller and GPIO controller.  

 
The two crossbars inside the Godson-2G processor are running 

different protocol. A cache coherence supported AXI protocol [20] 
is running on the Level-1 Xbar, while a standard AXI protocol is 
running on the Level-2 Xbar. Devices with requirement of cache 
coherence are placed onto the level-1 crossbar, such as L2 cache 
and Hyper-Transport controller. As the HyperTransport controller 
is placed on the Level-1 Xbar, cache coherence protocol between 
the native cache and IO device or remote cache in the other 
processors connected by the HyperTransport bus can be simply 
maintained. [21] 

The low speed devices without cache coherence requirement are 
placed onto the level-2 crossbar, such as PCI/LPC controller, 
DDR2/3 SDRAM controller, UART controller, SPI controller, and 
GPIO controller. Without cache coherence protocol supported, 
software method can be used to maintain the coherence with 
caches. [22] 

 
3. STRUCTURE OF THE PLATFORM 

As a high performance SOC chip, pre-silicon validation in the 
FPGA platform of Godson-2G raise compelling requirements, 
including: 

 
 Completeness. The capacity of the platform should be big 

enough to accommodate the whole chip design. 
 Flexibility. The platform should be flexible for evaluating 

different kinds of application, including benchmarks for 
computing power and IO performance, running different kinds 
of peripheral devices. 

 Applicability. Fast and accurate performance prediction for 
both IO-intensive and computing-intensive application. 
 

To address these requirements and challenges, we propose a 
two-board solution to spread system functionality across two 
boards. The resulting MFP platform is constructed by a mother 

board and an FPGA daughter board. The mother board contains all 
necessary building peripheral chips and device slots, while the 
FPGA daughter board hosts the whole Godson-2G. To ease 
hardware platform setup, S2C’s Dual Virtex-5 TAI Logic Module 
board is used as the FPGA daughter board. Two boards are erected 
together through high-speed PCB-to-PCB connectors. The photo of 
the Godson-2G MFP platform is shown in Fig. 2. The FPGA 
daughter board is placed above the mother board in the left. 

 
3.1. Mother Board 

The mother board contains the LPC interface part, the PCI 
interface part, SPI flash, UART ports and the south bridge part. 
LPC interface is connected to a LPC flash which stores the CPU 
booting codes, a nixie tube as debugging display and a super IO 
chip. The super IO chip is used for the function of serial port, PS/2 
ports for keyboard and mouse. The PCI interface is led to two 
standard 32-bit PCI sockets. The LPC, SPI, UART and PCI 
interfaces on the mother board are directly connected to the 
LPC/PCI controller and the Low-speed controller in the FPGAs. 

To evaluate the compatibility of the HyperTransport interface, 
two different mother boards are designed. The first one is using an 
Nvidia chipset as south bridge as shown in Fig.2, the other one is 
using AMD chipset, not shown here.  

The chipsets in the mother boards are connected to the upper 
FPGA through HyperTransport interface. Most of the right half of 
two mother boards is occupied by various peripherals of the south 
bridge, including PATA socket, SATA sockets, PCI sockets, PCI-E 
sockets, VGA port, LPC interface and GMAC interface with a 
GMAC PHY chip on board.  

 
 
3.2. FPGA Daughter Board 

The Virtex-5 330 [23] is a Xilinx FPGA with about 330K logic 
cells inside. The capacity of this FPGA is the largest before 2009, 
but still too small for this design. S2C Dual Virtex-5 330 TAI Logic 
Module is designed for rapid SoC/ASIC prototyping.  One TAI 
Logic Module is equipped with two Virtex-5 330 FPGA (as shown 
in Fig.3, called Upper FPGA and Lower FPGA), and has two 
DDR2 SO-DIMM sockets for memory extensive applications. 
There are 600 wires connecting between the two FPGAs, and many 
other pins routed to twelve IO connectors distributed on the 
daughter boards.   

Figure 2. FPGA platform of Godson-2G 
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Three of the IO connectors are used in this work. The one from 
Lower FPGA is used for LPC interfaces; two from the upper FPGA 
are used, one for HyperTransport link, the other one for LPC, PCI, 
SPI and UART interfaces. 

 
 

4. PARTITIONING AND SYNTHESIZING 
In the whole design flow, partitioning is the most important and 

complicated phase; afterward both parts of the partitioned design 
are synthesized separately and mapped into two FPGA chips on the 
same daughter board. Although EDA vendors has provided 
software tools such as Certify [24] to build multi-FPGA based 
prototypes of ASIC design in an easy, intuitive fashion, special care 
must be taken to avoid an inefficient solution when applying to a 
state of art processor like Godson-2G .  

An unevenly partitioned design can easily consume 100% of the 
I/O resources on a device while at the same time utilizing only a 
relatively small amount of its internal logic resources. In the MFP 
implementation, we develop a semi-custom design flow. The 
partitioning in MFP is manually done to take into consideration the 
interaction between components in different FPGAs. Another 
purpose of manual partition is to avoid multiplex groups of IOs 
together, which may result in a difficult, time-consuming and 
cumbersome development cycle. 

As for synthesizing, the RTL code of Godson-2G is entirely 
written in strictly synthesizable verilog language. 

 
4.1. Partitioning Metrics 

With two FPGA chips involved, it is important to partition the 
whole design into two parts, synthesize separately and map into 
corresponding FPGA. The way to partition is mainly determined 
by three facts. The first is resource utilization of each chip, the 
second is number of wires left for communication between the two 
chips, and the third is the location of IO interface from the mother 
board. 

Partition may be a complicated work for most multi-FPGA 
designs. The worst case is that times of iteration might take place 
when a partition can not fit well. To avoid this problem, we do a 
semi-custom partition in the view of architecture. We make some 
modification to the original architecture of Godson-2G and 
partition it into two subsystems. The first one is computing 
subsystem with only processor core and LPC controller embedded, 

with the purpose to be verified independently in a single FPGA 
system by fetching instructions and printing debugging messages 
through the LPC interface. The other one is an IO and memory 
subsystem including the rest parts of Godson-2G.  

The architecture of computing subsystem just looks like the 
Lower FPGA in Fig.4. Some tailored application with usage of 
only LPC bus such as serial port, LPC flash and nixie tube can be 
run on this system. The width of bus used for interconnection 
between the two subsystems is no more than 600, making direct 
communication between two FPGA possible. Direct 
communication proves great convenience for a multi-FPGA design, 
as no frequency doubling is needed, causing no frequency 
degression. 

With full acknowledgement that the Lower FPGA with only the 
processor core and PCI/LPC controller embedded works well, the 
problem left is just to deal with the upper FPGA, which contains 
the IO and memory subsystem.  

Considering all reasons mentioned above, architecture of 
Godson-2G FPGA is divided into two parts, as shown in Fig.4. 
Most of the IO interfaces are mapped into the Upper FPGA, with a 
replicate LPC controller integrated in the Lower FPGA marked as 
dotted lines in Fig.4, which can be bypassed when the two FPGAs 
working together.  
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I/O Link

Memory 
Controller

DDR2/3
SDRAM

Figure 4. Architecture of Godson-2G FPGA

MUX

LPC I/O Link

Lower FPGA

Upper FPGA

Interconnecting 
Bus

PCI/LPC 
Controller

Low-end I/O 
Controller

SPI, UART

 
The interconnecting bus between two FPGA is the original 

processor core interface which contains no more than 600 wires. As 
a LPC or PCI access need not to be cached, the replicate LPC 
controller can be placed into the Lower FPGA and connected 
directly to the processor core as a slave device by a multiplexer 
which is enabled when debugging and disabled at normal mode. 
Placing the LPC controller into the Lower FPGA can make full 
utilization of the IO pins in Lower FPGA and also make the Lower 
FPGA can be verified separately and before the whole system 
ready but also brings a little difference from the original 
architecture of Godson-2G. 

Figure 3. Boards of FPGA platform 



5 
 

Thus the Lower FPGA contains a basic system which can boot 
up the processor core with BIOS codes stored in LPC flash and 
interactive through serial port by the LPC bus. The upper FPGA 
contains the IO subsystem, including L2 cache, memory controller 
and HyperTransport controller and all other interfaces of Godson-
2G. 
 
4.2. Design Flow 

The entire design flow for verification and evaluation on Multi-
FPGA platform is shown in Fig.5. 

  
Original source code of Godson-2G is modified for the FPGA 

architecture and partitioned into Uint-1 and Unit-2 for the two 
pieces of FPGA. Some modules need not be verified in FPGA are 
removed, including the test controller, ejtag controller. 

FPGA PHYs (SERDES) are used to replace the original ASIC 
PHYs in the design, including Hyper-Transport PHY and DDR2/3 
PHY, which are hard cores in ASIC design. ASIC RAMs should be 
replaced by FPGA RAMs, too.  

That is the all modification done to source code. Before 
synthesizing, source code of FPGA is first verified using 
simulation tools in random verification environment to avoid any 
low class bugs that may be injected by the modification.  

All pins of the two FPGA are then allocated by their bus 
location and corresponding IO standard.  

After all these have been done, source codes for Unit-1 and 
Unit-2 is then synthesized separately in ISE, a synthesizing tool for 
Xilinx FPGA, to generate the binary files for downloading. 

A lot of applications including BIOS, Linux and different kinds 
of benchmarks are run and debugged on the MFP at the phase of 
FPGA emulation. 

Resource utilizations of each FPGA are shown in Table 1. 
 

Table 1. Resource utilization of each FPGA 
 Upper FPGA Lower FPGA 
Logic Utilization 
 Slice registers 46% 27% 
 Slice LUTs 65% 77% 
Logic Distribution 
 Occupied slices 79% 88% 
IO Utilization 
 Bounded IOBs 67% 43% 

Block RAM 56% 78% 
 
Utilization from both FPGA synthesizes and ASIC designs are 

shown in Table 2. There are some differences in the utilization 
between FPGA and ASIC. That many be caused by the different 
treatment about RAM and different cells used in FPGA and ASIC. 
Each slice of FPGA contains several registers and combining logic; 
while each instance of ASIC may be a register, a logic gate or a 
hard core, causing difference between the two designs. 

 
Table 2. Resource utilization of FPGA and ASIC 

 FPGA slice 
number 

Percent ASIC instance 
number 

Percent 

Processor core 93182 56% 800171 41% 
HyperTransport 22041 13% 427651 22% 
DDR2/3 19167 11% 405685 21% 
Level-1 Xbar 13907 8% 68222 4% 
Level-2 Xbar 8419 5% 56603 3% 
Config registers 2102 1% 19987 1% 
Level-2 cache 5883 4% 160124 8% 

 
5. EMULATING HIGH-SPEED IO 

Godson-2G is a high performance SOC with high-speed 
peripherals, including DDR2/3 SDRAM interface and 
HyperTransport interface.  

One of the targets of Multi-FPGA platform is to verify the 
peripheral interfaces and their interactivities with the third-party 
chips. That’s why we designed two different mother boards with 
different chipsets. The emulation of the DDR2/3 and 
HyperTransport PHY is an important step to achieve this goal. 
PHY (or SERDES) is a full custom designed hard core embedded 
on chip, used for high-speed transmission. The interface frequency 
of HyperTransport PHY in Godson-2G is 800MHz and DDR2/3 
PHY is 400MHz. As for FPGA prototyping, this part must be re-
implemented especially to emulate the function of the hard core in 
physical design.  

The FPGA PHY of HyperTransport targets at 200 MHz and the 
DDR2/3 PHY targets at 40 MHz. 

The main function of PHY is to convert between a set of parallel 
signals and a serial DDR (Double Data Rate) signal for on-board 
transmission. Driver of PHY is used to transform the internal 
parallel signals to external serial signal. Receiver of PHY is used to 
transform the external serial signal to internal parallel signals. 

Another function is clock phase adjustment. Both output clock 
of driver and input clock of receiver might need to be adjusted 
according to the protocol. 
 
5.1. HyperTransport Interface 

The link frequency of HyperTransport PHY must be at least 
200MHz due to HyperTransport specification. So that the 
corresponding control logic should run at 100MHz to communicate 
with south bridge. 

As For the HyperTransport interface, ratio of parallel data to its 
corresponding serial signal is 4:1. For example, the waveform of 
driver signals is shown in Fig.6. The four parallel data from the 
control logic named PHY_Dn (n = 0...3) are driven by the clock 
named PHY_clk which is running at 100MHz. They are serialized 
to generate the link signal HT_cad. Clock frequency is doubled and 
clock phase is postponed according to the protocol requirement. 
For the receiver part of PHY, it just reverses the course to de-



6 
 

serialize the four PHY_Dn data from the external HT_cad and 
restores the half-frequency clock from the HT_clk.  

With the implementation of FPGA PHY, frequency of 
HyperTransport interface is 200 MHz after system cold reset, with 
a link width of 8 bits. A set of asynchronous FIFO is placed 
between PHY and controller to transmit the data between 100 MHz 
clock domain of PHY and 25 MHz clock domain of the controller. 

Placement of PHY can be viewed in the architecture of 
HyperTransport interface in Fig.7. The Tx control logic and the Rx 
control logic are running at 100 MHz, while the HT controller is 
running at 25 MHz with three sets of asynchronous FIFOs between 
them.  

 
 

 
 
5.2. DDR2/3 Interface 

Frequency requirement of DDR link is not as restrict as 
HyperTransport link. Thus the DDR2/3 PHY can also run at 40 
MHz as DDR2/3 controller in the same clock domain. 

The signal processing method of the DDR2/3 PHY is similar to 
HyperTransport PHY. Both them are double data rate compared to 
clock frequency.  

 
In order to centralize the DDR_dqs signal to the DDR_dq 

signals in a memory write access, two clocks are introduced into 
DDR2/3 PHY, as shown in Fig.8, marked as CLK_dqs and 
CLK_data. The latency from CLK_dqs which is responding for 
DDR_dqs to CLK_data which is responding for DDR_dq is one-
forth clock phase.  

For read dqs and read data, the DDR2/3 PHY is also responding 
for centralizing the positive edge of DDR_dqs to the DDR_dq 
signals, de-serializing and synchronizing the data to memory 
controller clock domain.  

As there is no phase separation between read dqs and read data, 
read dqs must be delayed one-forth clock phase to sample and de-
serialize the read data. Thus a set of delay line logic is placed into 
the DDR2/3 PHY for each read dqs. 

 
6. INTEGRATION AND DEBUGGING 

In MPF validation, the processor is tested in a system setting. 
Validation in this setting concentrates not only on the processor, 
but also interaction with chipset, memory system, and other 
peripherals.  

 
6.1. System Environment 

The configuration of processor core and peripherals are shown 
in Table 3. The caches are chopped to 512KB from 1MB of ASIC 
design to fit the capacity of FPGA. 
 

Table 3. FPGA Configuration of Processor 
 Characters Frequency 
Processor core 4 issues 

Out of order 
64KB I-cache 
64KB D-cache 

25MHz 

L2 cache 512 KB 25MHz 
Memory controller 64 bit DDR2 

1GB 
40MHz 

HyperTransport 
controller 

 25MHz 

HyperTransport 
Bus 

8 bit width / 
16 bit width 

200MHz 

PCI/LPC controller  33MHz 
L1/L2 Xbar 128 bit width 25MHz 
Peripheral devices 10M/100M NIC on PCI 

GMAC on South bridge 
PATA on South bridge 
Flash, PS/2 on LPC 
Serial port on LPC 
UART port, SPI flash 

 

 



7 
 

6.2. Software Stack 
PMON will be first booted up on the Multi-FPGA platform after 

system reset. It will first initialize the processor core, caches, and 
then the memory controller. After that, it will initialize the 
HyperTransport interface and the devices on south bridge. 

After everything is initialized, a network card on the PCI bus of 
south bridge is activated. Linux kernel is downloaded by the 
Ethernet link from a tftp sever. 

When Linux is running, many other devices on south bridge are 
set up to work, including the IDE hard disk, GMAC Ethernet 
controller, and etc. 

Many things can be done on Linux operating system. A lot of 
benchmarks are tested, including SPEC CPU 2000, LMbench, ftp 
downloading, stream test, and etc. 

Some of the testing results are given in the following section. 
 

6.3. Debugging 
The best place to debug a processor bug is in the simulation 

environment, where all signals are available for scrutiny. 
Unfortunately, in the system environment of real system almost no 
internal signals are visible to the system debugger. A suite of tools 
was developed for use in the Pentium processor [25], using both 
architectural and micro-architectural features of the processor. 

FPGA platform is also hard to debug when any abnormality 
emerges, as signals inside are difficult to probe. But bugs are not 
occasional at the very beginning. Thus the way to debug must be 
under consideration. 

Some observing points are injected into the DMA path from 
HyperTransport controller to the memory controller for checking 
where a data corruption has happened.  

Each observing point is a monitor that can be triggered by a 
software programmable pattern. All of the monitors are chained 
together in a daisy-chain topology by two sets of buses called 
configure bus and configure return, which are controlled by the 
configuration registers module as Fig.9.  
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Level-1  Xbar

Level-2 Xbar
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Registers

HT
Controller

SouthBridge
I/O Link

Memory 
Controller

DDR2/3
SDRAM

Upper FPGA

Interconnecting 
Bus

Monitor0

Monitor1

M
on

ito
r2

Figure 9. Injection of Monitors
 

The configure bus transmits the read or write command with 
address and write data, while configure return contains the 
response from the selected monitor. Software can access the 
monitors by accessing the configuration registers module. 

With the help of injected monitors, it is easy to tell where the 
problem may be. 

We once encountered a problem which causes data downloaded 
by the Ethernet through the HyperTransport link sometimes 

incorrect in the memory. As the location in memory is not random, 
triggers are set in the monitors to locate where the data is corrupted. 
Three monitors are injected between the HyperTransport PHY and 
controller, HyperTransport controller and Level-1 Xbar, memory 
controller and Level-2 Xbar just as shown in Fig.9. After compared 
data from the three monitors, a mismatch was found between the 
FPGA RAM and ASIC RAM. At last the problem is resolved by 
replacing the FPGA RAM with register files. 

 
7. PERFORMANCE EVALUATION 

Another goal of the MFP is to evaluate the system performance 
compared to the real system, but the clock frequency of memory 
controller is too fast compared to the one of processor core, 
causing the delay of memory access from the processor too short 
compared to a real system. To emulate the memory access delay as 
accurate as possible, a set of FIFO is introduced into the memory 
access path. 

As a memory access delay in the DDR clock domain is about 
30-35 clock cycles, about 70 cycles should be injected into the 
clock domain of process core to emulate the real memory access 
delay from the process core in the Multi-FPGA platform. 

The impact of different memory access delay can be viewed in 
Fig. 10, 11 and 12. Four kind of delay are injected into the memory 
accessing path, including 0, 60 cycles, 70 cycles and 80 cycles.  

 

 
Figure 10. Bandwidth in different test (unit: MB/s) 

 
The results of testing hdparm, copy and network download are 

shown in Fig.10. The results of train scale SpecCPU 2000 are 
shown in Fig.11 and Fig.12. It is obvious that the few cycles 
injected, the higher the performance is achieved in most of the 
cases. 

 

 
Figure 11. Execution time of Spec2000 INT (unit: Sec) 
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Figure 12. Execution time of Spec2000 FP (unit: Sec) 

 
For some benchmarks in SpecCPU 2000, performance is slightly 

influenced by the increased delay of memory access, such as gzip, 
gcc, crafty, eon. That may be caused by the low miss rate in L2 
cache, which alleviate the impact of increasing memory access 
delay. 
 
8. CONCLUSION 

As mentioned before, software simulation is time costing and 
impracticable for verifying and evaluating a state of art micro-
processor such as Godson-2G. With shortcoming that the peripheral 
interfaces are hard to be verified in the hardware-based emulation, 
Multi-FPGA platform is developed for verification and evaluation 
of Godson-2G. 

 
In this work we provide: 

1) Although the current FPGA technology cannot accommodate 
a big design into one single device, the multi-FPGA based 
solution is a viable approach to emulating such a tightly-
couple design as modern processors. 

2) Even high-speed peripherals like HyperTransport and can be 
prototyped using carefully tuned FPGA. 

3) Compared to post-silicon debugging, locating bugs and 
performance bottleneck is relatively easy by instruct a 
monitoring segments into the raw design. 
 

The multi-FPGA based emulation system serves as a powerful 
environment for both architectural exploration and functional 
verification. Its capability to quickly model architectural 
modifications and accurately predict their performance effect to 
facilitate systems to chips innovations.  
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