S2C.
S2C.

OpenCL Hits FPGA-based rototyping Modules | SemiWiKi.com

OpenCL Hits FPGA-based rototyping Modules | SemiWiKi.com Nov 30, 2016

by Don Dingee  Published on 11-30-2016 03:00 PM


OpenCL brings algorithm development into a unified programming model regardless of the core, working across CPUs, GPUs, DSPs, and even FPGAs. Intel has been pushing OpenCL programming for some time, particularly at the high end with "Knights Landing"processors. Where other vendors are focused on straight-up C high-level synthesis for FPGAs, Intel is taking Altera technology deeper into OpenCL.

Using OpenCL, a developer can write an algorithm once, emulate it on a PC, then choose what hardware to run it on - or partition it across several different types of hardware depending on cost and packaging. Intel's FPGA SDK for OpenCL helps abstract out FPGA complexity for hardware acceleration. Their compiler can perform over 300 optimizations, then synthesize the FPGA in a single step.


Several different hosts are supported, including ARM Cortex-A9 cores typical of SoCs, IBM POWER Series processors, and X86 CPUs. The solution can be scaled across multiple FPGAs, which makes it ideal for the FPGA-based prototyping scenario. Instead of taking overt partitioning steps and spreading out RTL across several FPGAs, OpenCL code distributes seamlessly across FPGA devices. This is a huge advantage for HPC teams who want to concentrate on software, not hardware, and especially not the nuances of FPGA programming.


S2C has solved the problem of how to get many FPGAs interconnected in a single prototyping platform. With their new Arria 10 Prodigy FPGA Prototyping Logic Module, users can have anywhere from a single Arria 10 1150GX FPGA to a scaled-up system with 16 FPGAs in the Cloud Cube chassis. As the name implies, a single Arria 10 logic module has 1150K logic elements along with a full suite of programmable I/O including 48 transceivers running at up to 16Gbps, and 576 high performance I/Os. It’s an incredible leap, not only for those interested in working in the Intel/Altera environment, but for those working on OpenCL.

You can read more about the Intel FPGA SDK for OpenCL, and download a copy, here: Intel FPGA SDK for OpenCL.

The thing about FPGA-based prototyping is it is becoming less about the FPGA and more about the software running on the platform. While the entire S2C prototyping portfolio including expansion daughter cards, configuration, and debug capability comes to bear, the real news here is how OpenCL speeds up the software development process. The shape of HPC is changing from big, expensive iron to reconfigurable, accelerated computing with FPGAs underneath the hood.


opencl-hits-fpga-based-rototyping-modules-semiwiki.com-1.jpg

Back to list Back to list
Related S2C Complete Prototyping Solutions
Cloud Service
S2C could service a program providing comprehensive management capabilities for enterprise-wide prototyping environments. Through a flexible browser-based interface, and provides a host of management and control capabilities.
Prodigy S7 Series (Virtex UltraScale+)
The 7th generation SoC/ASIC prototyping solution from S2C, the Prodigy S7 series Logic System, is equipped with AMD's(Xilinx)Virtex UltraScale+™ FPGA. The Prodigy Logic System are supported by S2C'...
ARM Processor Adapters
Zynq Interface Module, SO-DIMM Memory Module
What's New at S2C
Request for Quote
What type of chip are you designing
What is the capacity of the ASIC gate included in the design?
5 million-20 million
20 million-50 million
50 million-100 million
100 million-1 billion
More than 1 billion
Which FPGA do you prefer to use?
Xilinx VU440
Xilinx KU115
Xilinx VU19P
Xilinx VU13P
Xilinx VU9P
Intel S10-10M
Intel S10-2800
Not sure, need professional advice
What kind of FPGA configuration do you need?
Single FPGA
Dual FPGA
Four FPGAs
Eight FPGAs
Not sure, need professional advice
What kind of peripheral interface do you need?
How many prototype verification platforms do you need?
Do you need the following tools?
Segmentation tool
Multiple FPGA debugging tools
Co-modeling tool (allows large amounts of data to interact between FPGA and PC host)
When do you need to use our products?
0-6 months
6-12 months
More than 12 months
Not sure
Any additional comments?